Explainable AI over the Internet of Things: Overview, State-of-the-Art
and Future Directions
- URL: http://arxiv.org/abs/2211.01036v1
- Date: Wed, 2 Nov 2022 11:08:52 GMT
- Title: Explainable AI over the Internet of Things: Overview, State-of-the-Art
and Future Directions
- Authors: Senthil Kumar Jagatheesaperumal, Quoc-Viet Pham, Rukhsana Ruby,
Zhaohui Yang, Chunmei Xu, and Zhaoyang Zhang
- Abstract summary: XAI is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines.
Existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT.
We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT)
- Score: 18.141885505685387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable Artificial Intelligence (XAI) is transforming the field of
Artificial Intelligence (AI) by enhancing the trust of end-users in machines.
As the number of connected devices keeps on growing, the Internet of Things
(IoT) market needs to be trustworthy for the end-users. However, existing
literature still lacks a systematic and comprehensive survey work on the use of
XAI for IoT. To bridge this lacking, in this paper, we address the XAI
frameworks with a focus on their characteristics and support for IoT. We
illustrate the widely-used XAI services for IoT applications, such as security
enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and
Internet of City Things (IoCT). We also suggest the implementation choice of
XAI models over IoT systems in these applications with appropriate examples and
summarize the key inferences for future works. Moreover, we present the
cutting-edge development in edge XAI structures and the support of
sixth-generation (6G) communication services for IoT applications, along with
key inferences. In a nutshell, this paper constitutes the first holistic
compilation on the development of XAI-based frameworks tailored for the demands
of future IoT use cases.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Fostering new Vertical and Horizontal IoT Applications with Intelligence
Everywhere [8.208838459484676]
Intelligence Everywhere is predicated on the seamless integration of IoT networks transporting a vast amount of data streams.
This paper discusses the state-of-the-art research and the principles of the Intelligence Everywhere framework.
It also introduces a novel perspective for the development of horizontal IoT applications.
arXiv Detail & Related papers (2023-09-30T11:59:39Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Federated Learning for Industrial Internet of Things in Future
Industries [106.13524161081355]
The Industrial Internet of Things (IIoT) offers promising opportunities to transform the operation of industrial systems.
Recently, artificial intelligence (AI) has been widely utilized for realizing intelligent IIoT applications.
Federated Learning (FL) is particularly attractive for intelligent IIoT networks by coordinating multiple IIoT devices and machines to perform AI training at the network edge.
arXiv Detail & Related papers (2021-05-31T01:02:59Z) - Reliable Fleet Analytics for Edge IoT Solutions [0.0]
We propose a framework for facilitating machine learning at the edge for AIoT applications.
The contribution is an architecture that includes services, tools, and methods for delivering fleet analytics at scale.
We present a preliminary validation of the framework by performing experiments with IoT devices on a university campus's rooms.
arXiv Detail & Related papers (2021-01-12T11:28:43Z) - Machine Learning Systems in the IoT: Trustworthiness Trade-offs for Edge
Intelligence [1.2437226707039446]
Machine learning systems (MLSys) are emerging in the Internet of Things (IoT) to provision edge intelligence.
This paper analyzes the trade-offs by covering the latest developments (up to 2020) on scaling and distributing ML across cloud, edge, and IoT devices.
arXiv Detail & Related papers (2020-12-01T11:42:34Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Machine learning and data analytics for the IoT [8.39035688352917]
We review how IoT-generated data are processed for machine learning analysis.
We propose a framework to enable IoT applications to adaptively learn from other IoT applications.
arXiv Detail & Related papers (2020-06-30T07:38:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.