Toward Neural Network Simulation of Variational Quantum Algorithms
- URL: http://arxiv.org/abs/2211.02929v1
- Date: Sat, 5 Nov 2022 15:46:47 GMT
- Title: Toward Neural Network Simulation of Variational Quantum Algorithms
- Authors: Oliver Knitter, James Stokes, Shravan Veerapaneni
- Abstract summary: Variational quantum algorithms (VQAs) utilize a hybrid quantum-classical architecture to recast problems of high-dimensional linear algebra as ones of optimization.
We ask if classical optimization algorithms can be constructed paralleling other VQAs, focusing on the example of the variational quantum linear solver (VQLS)
We find that such a construction can be applied to the VQLS, yielding a paradigm that could theoretically extend to other VQAs of similar form.
- Score: 1.9723551683930771
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms (VQAs) utilize a hybrid quantum-classical
architecture to recast problems of high-dimensional linear algebra as ones of
stochastic optimization. Despite the promise of leveraging near- to
intermediate-term quantum resources to accelerate this task, the computational
advantage of VQAs over wholly classical algorithms has not been firmly
established. For instance, while the variational quantum eigensolver (VQE) has
been developed to approximate low-lying eigenmodes of high-dimensional sparse
linear operators, analogous classical optimization algorithms exist in the
variational Monte Carlo (VMC) literature, utilizing neural networks in place of
quantum circuits to represent quantum states. In this paper we ask if classical
stochastic optimization algorithms can be constructed paralleling other VQAs,
focusing on the example of the variational quantum linear solver (VQLS). We
find that such a construction can be applied to the VQLS, yielding a paradigm
that could theoretically extend to other VQAs of similar form.
Related papers
- Adiabatic training for Variational Quantum Algorithms [0.4374837991804085]
This paper presents a new hybrid Quantum Machine Learning (QML) model composed of three elements.
Gate-based Quantum Computer running the Variational Quantum Algorithm (VQA) representing the Quantum Neural Network (QNN)
An adiabatic Quantum Computer where the optimization function is executed to find the best parameters for the VQA.
arXiv Detail & Related papers (2024-10-24T10:17:48Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Hybrid Quantum Classical Simulations [0.0]
We report on two major hybrid applications of quantum computing, namely, the quantum approximate optimisation algorithm (QAOA) and the variational quantum eigensolver (VQE)
Both are hybrid quantum classical algorithms as they require incremental communication between a classical central processing unit and a quantum processing unit to solve a problem.
arXiv Detail & Related papers (2022-10-06T10:49:15Z) - Alternating Layered Variational Quantum Circuits Can Be Classically
Optimized Efficiently Using Classical Shadows [4.680722019621822]
Variational quantum algorithms (VQAs) are the quantum analog of classical neural networks (NNs)
We introduce a training algorithm with an exponential reduction in training cost of such VQAs.
arXiv Detail & Related papers (2022-08-24T15:47:44Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Classically optimal variational quantum algorithms [0.0]
Hybrid quantum-classical algorithms, such as variational quantum algorithms (VQA), are suitable for implementation on NISQ computers.
In this Letter we expand an implicit step of VQAs: the classical pre-computation subroutine which can non-trivially use classical algorithms to simplify, transform, or specify problem instance-specific variational quantum circuits.
arXiv Detail & Related papers (2021-03-31T13:33:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.