Quantum simulation of topological zero modes on a 41-qubit
superconducting processor
- URL: http://arxiv.org/abs/2211.05341v2
- Date: Fri, 14 Jul 2023 03:02:03 GMT
- Title: Quantum simulation of topological zero modes on a 41-qubit
superconducting processor
- Authors: Yun-Hao Shi, Yu Liu, Yu-Ran Zhang, Zhongcheng Xiang, Kaixuan Huang,
Tao Liu, Yong-Yi Wang, Jia-Chi Zhang, Cheng-Lin Deng, Gui-Han Liang,
Zheng-Yang Mei, Hao Li, Tian-Ming Li, Wei-Guo Ma, Hao-Tian Liu, Chi-Tong
Chen, Tong Liu, Ye Tian, Xiaohui Song, S. P. Zhao, Kai Xu, Dongning Zheng,
Franco Nori, and Heng Fan
- Abstract summary: We develop a one-dimensional 43-qubit superconducting quantum processor named as Chuang-tzu.
By engineering diagonal Aubry-Andr$acutemathrme$-Harper (AAH) models, we experimentally demonstrate the Hofstadter butterfly energy spectrum.
Using Floquet engineering, we verify the existence of the topological zero modes in the commensurate off-diagonal AAH models.
- Score: 22.990199532365097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum simulation of different exotic topological phases of quantum matter
on a noisy intermediate-scale quantum (NISQ) processor is attracting growing
interest. Here, we develop a one-dimensional 43-qubit superconducting quantum
processor, named as Chuang-tzu, to simulate and characterize emergent
topological states. By engineering diagonal
Aubry-Andr$\acute{\mathrm{e}}$-Harper (AAH) models, we experimentally
demonstrate the Hofstadter butterfly energy spectrum. Using Floquet
engineering, we verify the existence of the topological zero modes in the
commensurate off-diagonal AAH models, which have never been experimentally
realized before. Remarkably, the qubit number over 40 in our quantum processor
is large enough to capture the substantial topological features of a quantum
system from its complex band structure, including Dirac points, the energy
gap's closing, the difference between even and odd number of sites, and the
distinction between edge and bulk states. Our results establish a versatile
hybrid quantum simulation approach to exploring quantum topological systems in
the NISQ era.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Measuring quantum geometric tensor of non-Abelian system in
superconducting circuits [21.82634956452952]
We use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation.
We reveal its topological feature by extracting the topological invariant, demonstrating an effective protocol for quantum simulation of a non-Abelian system.
arXiv Detail & Related papers (2022-09-26T01:08:39Z) - Simulation of interaction-induced chiral topological dynamics on a
digital quantum computer [3.205614282399206]
Chiral edge states are sought-after as paradigmatic topological states relevant to quantum information processing and electron transport.
We demonstrate chiral topological propagation that is induced by suitably designed interactions, instead of flux or spin-orbit coupling.
By taking advantage of the quantum nature of the platform, we circumvented difficulties from the limited qubit number and gate fidelity in present-day noisy intermediate-scale quantum (NISQ)-era quantum computers.
arXiv Detail & Related papers (2022-07-28T18:00:29Z) - Perturbative quantum simulation [2.309018557701645]
We introduce perturbative quantum simulation, which combines the complementary strengths of the two approaches.
The use of a quantum processor eliminates the need to identify a solvable unperturbed Hamiltonian.
We numerically benchmark the method for interacting bosons, fermions, and quantum spins in different topologies.
arXiv Detail & Related papers (2021-06-10T17:38:25Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Digital Simulation of Topological Matter on Programmable Quantum
Processors [0.0]
We propose and demonstrate an approach to design topologically protected quantum circuits on the current generation of noisy quantum processors.
In particular, a low-depth topological quantum circuit is performed on both IBM and Rigetti quantum processors.
arXiv Detail & Related papers (2020-03-13T02:32:48Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.