Realization of fermionic Laughlin state on a quantum processor
- URL: http://arxiv.org/abs/2503.13294v1
- Date: Mon, 17 Mar 2025 15:41:27 GMT
- Title: Realization of fermionic Laughlin state on a quantum processor
- Authors: Lingnan Shen, Mao Lin, Cedric Yen-Yu Lin, Di Xiao, Ting Cao,
- Abstract summary: We demonstrate the nu = 1/3 fermionic Laughlin state on IonQ's Aria-1 trapped-ion quantum computer.<n>We extract key observables that characterize the Laughlin state, including correlation hole and chiral edge modes.<n>This work establishes a scalable quantum framework to simulate material-intrinsic topological orders.
- Score: 3.7037407965508287
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Strongly correlated topological phases of matter are central to modern condensed matter physics and quantum information technology but often challenging to probe and control in material systems. The experimental difficulty of accessing these phases has motivated the use of engineered quantum platforms for simulation and manipulation of exotic topological states. Among these, the Laughlin state stands as a cornerstone for topological matter, embodying fractionalization, anyonic excitations, and incompressibility. Although its bosonic analogs have been realized on programmable quantum simulators, a genuine fermionic Laughlin state has yet to be demonstrated on a quantum processor. Here, we realize the {\nu} = 1/3 fermionic Laughlin state on IonQ's Aria-1 trapped-ion quantum computer using an efficient and scalable Hamiltonian variational ansatz with 369 two-qubit gates on a 16-qubit circuit. Employing symmetry-verification error mitigation, we extract key observables that characterize the Laughlin state, including correlation hole and chiral edge modes, with strong agreement to exact diagonalization benchmarks. This work establishes a scalable quantum framework to simulate material-intrinsic topological orders and provides a starting point to explore its dynamics and excitations on digital quantum processors.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Fermion-qudit quantum processors for simulating lattice gauge theories
with matter [0.0]
We present a complete Rydberg-based architecture, co-designed to digitally simulate the dynamics of general gauge theories.
We show how to prepare hadrons made up of fermionic matter constituents bound by non-abelian gauge fields.
In both cases, we estimate the required resources, showing how quantum devices can be used to calculate experimentally-relevant quantities.
arXiv Detail & Related papers (2023-03-15T15:12:26Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing resonating valence bonds on a programmable germanium quantum
simulator [0.0]
We introduce quantum simulation using hole spins in germanium quantum dots.
We demonstrate extensive and coherent control enabling the tuning of multi-spin states in isolated, paired, and fully coupled quantum dots.
arXiv Detail & Related papers (2022-08-24T12:55:51Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Perturbative quantum simulation [2.309018557701645]
We introduce perturbative quantum simulation, which combines the complementary strengths of the two approaches.
The use of a quantum processor eliminates the need to identify a solvable unperturbed Hamiltonian.
We numerically benchmark the method for interacting bosons, fermions, and quantum spins in different topologies.
arXiv Detail & Related papers (2021-06-10T17:38:25Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Realizing topologically ordered states on a quantum processor [0.0845004185087851]
Topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems.
We prepare the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor.
arXiv Detail & Related papers (2021-04-02T18:00:01Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Digital Simulation of Topological Matter on Programmable Quantum
Processors [0.0]
We propose and demonstrate an approach to design topologically protected quantum circuits on the current generation of noisy quantum processors.
In particular, a low-depth topological quantum circuit is performed on both IBM and Rigetti quantum processors.
arXiv Detail & Related papers (2020-03-13T02:32:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.