論文の概要: Data-Driven Design for Metamaterials and Multiscale Systems: A Review
- arxiv url: http://arxiv.org/abs/2307.05506v1
- Date: Sat, 1 Jul 2023 22:36:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-16 03:35:44.200342
- Title: Data-Driven Design for Metamaterials and Multiscale Systems: A Review
- Title(参考訳): メタマテリアルとマルチスケールシステムのためのデータ駆動設計:レビュー
- Authors: Doksoo Lee, Wei Wayne Chen, Liwei Wang, Yu-Chin Chan, Wei Chen
- Abstract要約: メタマテリアル(Metamaterials)は、自然界にある物質を超える効果的な物質パラメータを示すために設計された人工材料である。
メタマテリアルの可能性を最大限に発揮できる魅力的なパラダイムとして、データ駆動設計(Data-driven Design)が生まれています。
我々は、データ駆動モジュールに関する既存の研究を組織し、データ取得、機械学習ベースの単位セル設計、データ駆動型マルチスケール最適化を含む。
- 参考スコア(独自算出の注目度): 15.736695579155047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metamaterials are artificial materials designed to exhibit effective material
parameters that go beyond those found in nature. Composed of unit cells with
rich designability that are assembled into multiscale systems, they hold great
promise for realizing next-generation devices with exceptional, often exotic,
functionalities. However, the vast design space and intricate
structure-property relationships pose significant challenges in their design. A
compelling paradigm that could bring the full potential of metamaterials to
fruition is emerging: data-driven design. In this review, we provide a holistic
overview of this rapidly evolving field, emphasizing the general methodology
instead of specific domains and deployment contexts. We organize existing
research into data-driven modules, encompassing data acquisition, machine
learning-based unit cell design, and data-driven multiscale optimization. We
further categorize the approaches within each module based on shared
principles, analyze and compare strengths and applicability, explore
connections between different modules, and identify open research questions and
opportunities.
- Abstract(参考訳): メタマテリアル(Metamaterials)は、自然界にある物質を超える効果的な物質パラメータを示すために設計された人工材料である。
多スケールシステムに組み立てられる設計性に富んだユニットセルで構成されており、例外的でしばしばエキゾチックな機能を持つ次世代デバイスを実現するという大きな期待を持っている。
しかし、広大な設計空間と複雑な構造とプロパティの関係は、設計に重大な課題をもたらす。
メタマテリアルの可能性を最大限に発揮できる魅力的なパラダイムとして、データ駆動設計が登場しています。
本稿では、この急速に発展している分野を概観し、特定のドメインやデプロイメントコンテキストの代わりに一般的な方法論を強調する。
我々は、データ駆動モジュール、データ取得、機械学習に基づくユニットセル設計、データ駆動マルチスケール最適化に関する既存の研究を整理する。
我々はさらに,共有原則に基づいた各モジュール内のアプローチを分類し,強みと適用性を分析し比較し,異なるモジュール間の接続を探索し,オープンリサーチの質問と機会を識別する。
関連論文リスト
- BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
大規模言語モデル(LLM)は、様々な領域でますます重要になっている。
BabelBenchは、コード実行によるマルチモーダルなマルチ構造化データ管理におけるLLMの熟練度を評価する革新的なベンチマークフレームワークである。
BabelBenchの実験結果から,ChatGPT 4のような最先端モデルでさえ,大幅な改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2024-10-01T15:11:24Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
本研究では、現在のAIモデルがマルチモーダルな構造化データに基づいて知識を考慮した推論を行うことができるかどうかを検討する。
この目的のために設計された新しいデータセットであるMMTabQAを紹介する。
我々の実験は、複数のテキストと画像の入力を効果的に統合し解釈する上で、現在のAIモデルに対する重大な課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-08-25T15:17:43Z) - AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence [0.0]
提案されている物理対応生成AIプラットフォームAtomAgentsは、大規模言語モデル(LLM)のインテリジェンスをシナジする
以上の結果から, 合金間におけるキー特性の正確な予測が可能となり, 先進金属合金の開発を推し進めるためには, 固溶合金が重要な役割を担っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-07-13T22:46:02Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Modular Deep Learning [120.36599591042908]
トランスファーラーニングは近年、機械学習の主要なパラダイムとなっている。
負の干渉を伴わずに複数のタスクを専門とするモデルを開発する方法はまだ不明である。
これらの課題に対する有望な解決策として、モジュール型ディープラーニングが登場した。
論文 参考訳(メタデータ) (2023-02-22T18:11:25Z) - Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions [0.0]
我々は,AIによる材料設計の進歩とそのエネルギー材料への応用についてレビューする。
文献における手法を,少数のデータから学習する能力の観点から評価する。
本稿では,メタラーニング,アクティブラーニング,ベイズラーニング,半/弱教師付きラーニングなど,EM教材の今後の研究方向性について提案する。
論文 参考訳(メタデータ) (2022-11-15T14:41:11Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - T-METASET: Task-Aware Generation of Metamaterial Datasets by
Diversity-Based Active Learning [14.668178146934588]
タスク対応データセット生成のためのインテリジェントなデータ取得フレームワークであるt-METASETを提案する。
提案するフレームワークを,汎用性,タスク認識性,カスタマイズ可能な3つのシナリオで検証する。
論文 参考訳(メタデータ) (2022-02-21T22:46:49Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
深部生成モデルに基づく新しいデータ駆動メタマテリアル設計フレームワークを提案する。
本研究では,VAEの潜伏空間が,形状類似度を測定するための距離メートル法を提供することを示す。
機能的グレードとヘテロジニアスなメタマテリアルシステムの両方を設計することで、我々のフレームワークを実証する。
論文 参考訳(メタデータ) (2020-06-27T03:56:55Z) - METASET: Exploring Shape and Property Spaces for Data-Driven
Metamaterials Design [20.272835126269374]
より小さいが多様な単細胞が、スケーラブルな検索と非バイアス学習につながることを示す。
我々のフレキシブルな方法は、採用される計量によらず、ユニークな部分集合を蒸留することができる。
私たちの多様なサブセットは、デザイナが使用するために公開されています。
論文 参考訳(メタデータ) (2020-06-01T03:36:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。