論文の概要: Quantum Approximate Optimization Algorithm Parameter Prediction Using a
Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2211.09513v1
- Date: Thu, 17 Nov 2022 13:20:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-19 06:48:42.368092
- Title: Quantum Approximate Optimization Algorithm Parameter Prediction Using a
Convolutional Neural Network
- Title(参考訳): 畳み込みニューラルネットワークを用いた量子近似最適化アルゴリズムパラメータ予測
- Authors: Ningyi Xie, Xinwei Lee, Dongsheng Cai, Yoshiyuki Saito, Nobuyoshi Asai
- Abstract要約: 我々は、深度$p+1$QAOAのパラメータから深度$p+1$QAOAのパラメータを予測する畳み込みニューラルネットワークを構築している。
Max-Cut に対する平均近似比 92735$ 800$ ErdHos-R'enyi を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum approximate optimization algorithm (QAOA) is a quantum-classical
hybrid algorithm aiming to produce approximate solutions for combinatorial
optimization problems. In the QAOA, the quantum part prepares a quantum
parameterized state that encodes the solution, where the parameters are
optimized by a classical optimizer. However, it is difficult to find optimal
parameters when the quantum circuit becomes deeper. Hence, there is numerous
active research on the performance and the optimization cost of QAOA. In this
work, we build a convolutional neural network to predict parameters of depth
$p+1$ QAOA instance by the parameters from the depth $p$ QAOA counterpart. We
propose two strategies based on this model. First, we recurrently apply the
model to generate a set of initial values for a certain depth QAOA. It
successfully initiates depth $10$ QAOA instances, whereas each model is only
trained with the parameters from depths less than $6$. Second, the model is
applied repetitively until the maximum expected value is reached. An average
approximation ratio of $0.9735$ for Max-Cut over $800$ Erd\H{o}s-R\'{e}nyi
graphs is obtained, while the optimizer is only adopted for generating the
first input of the model.
- Abstract(参考訳): 量子近似最適化アルゴリズム (quantum approximation optimization algorithm,qaoa) は、組合せ最適化問題の近似解を生成する量子古典ハイブリッドアルゴリズムである。
QAOAでは、量子部分は、古典最適化器によって最適化された解を符号化する量子パラメータ化状態を作成する。
しかし、量子回路がより深くなると最適なパラメータを見つけることは困難である。
したがって、QAOAの性能と最適化コストについて多くの研究がなされている。
本研究では,深度$p+1$QAOAインスタンスのパラメータを,深度$p+1$QAOAインスタンスのパラメータから予測する畳み込みニューラルネットワークを構築する。
このモデルに基づく2つの戦略を提案する。
まず、ある深さのQAOAに対して初期値のセットを生成するためにモデルを繰り返し適用する。
深度10ドルのQAOAインスタンスをうまく起動するが、各モデルは深さ6ドル未満のパラメータでしか訓練されない。
第二に、モデルが最大期待値に達するまで繰り返し適用される。
最大カットに対する平均近似比は$0.9735$で、800$ erd\h{o}s-r\'{e}nyiグラフが得られるが、オプティマイザはモデルの最初の入力を生成するためにのみ用いられる。
関連論文リスト
- Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
我々は、$m=mathcalO(nk)$バイナリ変数を$n$ qubitsだけを使って最適化するために、$k>1$で可変量子ソルバを導入する。
我々は,特定の量子ビット効率の符号化が,バレン高原の超ポリノミウム緩和を内蔵特徴としてもたらすことを解析的に証明した。
論文 参考訳(メタデータ) (2024-01-17T18:59:38Z) - A Parameter Setting Heuristic for the Quantum Alternating Operator
Ansatz [0.0]
本稿では,問題の大きさに応じて異なるコスト値の数が増加する場合に適したパラメータ設定戦略を提案する。
我々は、完全均一性が正確に保持され、状態と期待値の両方を記述する情報が得られるQAOAの古典的同次プロキシを定義する。
最大3ドルのQAOAレベルでは、これまでのグローバルに最適化されたアプローチによって返される近似比にマッチするパラメータを容易に見つけることができます。
論文 参考訳(メタデータ) (2022-11-17T00:18:06Z) - The QAOA with Few Measurements [4.713817702376467]
近似量子最適化アルゴリズム (QAOA) はもともと最適化問題の解法として開発された。
完全な記述型ベンチマーク技術は、多くの量子ビットに対してしばしば高価である。
中性原子量子コンピュータのような実験的な量子コンピューティングプラットフォームは、繰り返し速度が遅い。
論文 参考訳(メタデータ) (2022-05-13T18:42:20Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Unsupervised strategies for identifying optimal parameters in Quantum
Approximate Optimization Algorithm [3.508346077709686]
最適化なしでパラメータを設定するための教師なし機械学習手法について検討する。
繰り返しに使用するQAOAパラメータの数が3ドルに制限された場合、これらをRecursive-QAOAで3ドルまで紹介します。
我々は、アングルを広範囲に最適化し、多数のサーキットコールを省く場合と同じような性能を得る。
論文 参考訳(メタデータ) (2022-02-18T19:55:42Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Hybrid quantum-classical algorithms for approximate graph coloring [65.62256987706128]
量子近似最適化アルゴリズム(RQAOA)をMAX-$k$-CUTに適用する方法を示す。
任意のグラフに対するレベル-$1$QAOAとレベル-$1$RQAOAをシミュレートした,効率的な古典的シミュレーションアルゴリズムを構築する。
論文 参考訳(メタデータ) (2020-11-26T18:22:21Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Accelerating Quantum Approximate Optimization Algorithm using Machine
Learning [6.735657356113614]
本稿では,量子近似最適化アルゴリズム(QAOA)の実装を高速化する機械学習手法を提案する。
QAOAは、いわゆる量子超越性を証明する量子古典ハイブリッドアルゴリズムである。
提案手法は,264種類のグラフを用いて行った解析から,最適化の繰り返し回数を最大65.7%削減できることを示す。
論文 参考訳(メタデータ) (2020-02-04T02:21:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。