論文の概要: A privacy-preserving data storage and service framework based on deep
learning and blockchain for construction workers' wearable IoT sensors
- arxiv url: http://arxiv.org/abs/2211.10713v1
- Date: Sat, 19 Nov 2022 14:57:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 23:31:52.119246
- Title: A privacy-preserving data storage and service framework based on deep
learning and blockchain for construction workers' wearable IoT sensors
- Title(参考訳): 建設作業員のウェアラブルIoTセンサのためのディープラーニングとブロックチェーンに基づくプライバシ保護データストレージとサービスフレームワーク
- Authors: Xiaoshan Zhou and Pin-Chao Liao
- Abstract要約: ウェアラブルモノのインターネット(IoT)センサー、特に脳-コンピュータインターフェース(BCI)によって収集される脳信号の分類は、最も急速に成長している研究分野の1つである。
本稿では,このギャップを埋めて,BCIアプリケーションを実装するためのセキュアなプライバシ保護プロトコルを提案する。
われわれはまず脳の信号を画像に変換し、生成的敵ネットワークを使って合成信号を生成し、データのプライバシーを保護した。
さらに、ブロックチェーンベースのスキームを提案し、個人の神経生理学的データと分析レポートの保存、クエリ、共有を安全かつプライバシーに配慮したものにすることを目的としたプロトタイプを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifying brain signals collected by wearable Internet of Things (IoT)
sensors, especially brain-computer interfaces (BCIs), is one of the
fastest-growing areas of research. However, research has mostly ignored the
secure storage and privacy protection issues of collected personal
neurophysiological data. Therefore, in this article, we try to bridge this gap
and propose a secure privacy-preserving protocol for implementing BCI
applications. We first transformed brain signals into images and used
generative adversarial network to generate synthetic signals to protect data
privacy. Subsequently, we applied the paradigm of transfer learning for signal
classification. The proposed method was evaluated by a case study and results
indicate that real electroencephalogram data augmented with artificially
generated samples provide superior classification performance. In addition, we
proposed a blockchain-based scheme and developed a prototype on Ethereum, which
aims to make storing, querying and sharing personal neurophysiological data and
analysis reports secure and privacy-aware. The rights of three main transaction
bodies - construction workers, BCI service providers and project managers - are
described and the advantages of the proposed system are discussed. We believe
this paper provides a well-rounded solution to safeguard private data against
cyber-attacks, level the playing field for BCI application developers, and to
the end improve professional well-being in the industry.
- Abstract(参考訳): ウェアラブルモノのインターネット(IoT)センサー、特に脳-コンピュータインターフェース(BCI)によって収集される脳信号の分類は、最も急速に成長している研究分野の1つである。
しかし、研究は収集された個人の神経生理学的データの保管とプライバシー保護の問題をほとんど無視している。
そこで本稿では,このギャップを埋めて,BCIアプリケーションを実装するためのセキュアなプライバシ保護プロトコルを提案する。
まず脳の信号を画像に変換し、生成的敵ネットワークを使って合成信号を生成し、データのプライバシーを保護した。
その後,信号分類に転送学習のパラダイムを適用した。
提案法をケーススタディで評価し,人工的に生成したサンプルを加味した実際の脳波データは分類性能に優れることを示す。
さらに、ブロックチェーンベースのスキームを提案し、ethereumのプロトタイプを開発した。これは、個人の神経生理学的データと分析レポートの保存、クエリ、共有を可能にすることを目的としている。
建設業者、bciサービスプロバイダ、プロジェクトマネージャの3つの主要な取引機関の権利について述べ、提案するシステムの利点について論じる。
この論文は、サイバー攻撃に対してプライベートデータを安全に保護し、bciアプリケーション開発者のためのプレーフィールドをレベル化し、業界におけるプロフェッショナルな幸福を最終的に改善するための、十分なソリューションを提供すると信じています。
関連論文リスト
- Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することで、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
産業用IoT(Industrial Internet of Things, IIoT)デバイスを利用すれば、DTを構築するためのデータを共有するメカニズムは、悪い選択問題の影響を受けやすい。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Securing The Future Of Healthcare: Building A Resilient Defense System For Patient Data Protection [0.0]
この研究は、勾配ボオスティング機械学習モデルを用いて、医療データ漏洩の深刻度を予測する。
その結果、ハッキングとITインシデントは、医療業界で最も一般的なタイプの違反であることがわかった。
モデル評価の結果,勾配向上アルゴリズムは良好に動作することがわかった。
論文 参考訳(メタデータ) (2024-07-23T04:25:35Z) - Privacy-Preserving Collaborative Genomic Research: A Real-Life Deployment and Vision [2.7968600664591983]
本稿ではLynx.MDと共同で開発されたゲノム研究のためのプライバシ保護フレームワークを提案する。
このフレームワークは、重要なサイバーセキュリティとプライバシの課題に対処し、プライバシ保護によるゲノムデータの共有と分析を可能にする。
Lynx.MD内でのフレームワークの実装には、ゲノムデータをバイナリ形式に符号化し、制御された摂動技術を通じてノイズを適用することが含まれる。
論文 参考訳(メタデータ) (2024-07-12T05:43:13Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
セキュアでプライバシ保護されたコラボレーティブなIoT侵入検出を実現するために,階層的なブロックチェーンベースのフェデレーション学習フレームワークを提案する。
MLベースの侵入検出フレームワークの提案は、学習プロセスと組織データのプライバシを確保するために、階層的なフェデレーション付き学習アーキテクチャに従っている。
その結果は、データプライバシを保持しながら、広範囲の悪意あるアクティビティを検出できる、セキュアに設計されたMLベースの侵入検知システムである。
論文 参考訳(メタデータ) (2022-04-08T19:06:16Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
本稿では,DQNエージェントが,離散的かつ連続的な状態空間を持つ環境でどのように動作するかを予備的,実験的に検討する。
その結果,非決定論的暗号が存在する場合でも,エージェントは依然として小さな状態空間で学習することができるが,より複雑な環境では性能が低下することがわかった。
論文 参考訳(メタデータ) (2021-09-16T21:59:37Z) - BUNET: Blind Medical Image Segmentation Based on Secure UNET [24.374253627122467]
UNETアーキテクチャに基づくプライバシ保護型医用画像セグメンテーションを実装したセキュアプロトコルであるブラインドUNET(BUNET)を提案する。
BUNETでは、同相暗号やガーブロード回路(GC)などの暗号プリミティブを効率よく利用し、UNETニューラルアーキテクチャのための完全なセキュアなプロトコルを設計する。
本研究では, 既知精度の低下を伴うベースラインアーキテクチャにおいて, 最先端のセキュア推論技術と比較して最大14倍の推論時間短縮を実現することができることを示す。
論文 参考訳(メタデータ) (2020-07-14T07:05:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。