論文の概要: Federated Learning-Enhanced Blockchain Framework for Privacy-Preserving Intrusion Detection in Industrial IoT
- arxiv url: http://arxiv.org/abs/2505.15376v1
- Date: Wed, 21 May 2025 11:11:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.520657
- Title: Federated Learning-Enhanced Blockchain Framework for Privacy-Preserving Intrusion Detection in Industrial IoT
- Title(参考訳): 産業用IoTにおけるプライバシ保護侵入検出のためのフェデレーション学習強化ブロックチェーンフレームワーク
- Authors: Anas Ali, Mubashar Husain, Peter Hans,
- Abstract要約: 産業用IoT(Industrial Internet of Things, IIoT)システムはスマートマニュファクチャリングに不可欠なものになっています。
従来の侵入検知システム(IDS)は、データプライバシやレイテンシ、単一障害点に対する懸念を高める集中型アーキテクチャに依存することが多い。
我々は、IIoT環境に適したプライバシー保護侵入検知のための新しいFederated Learning-Enhanced Framework(FL-BCID)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Industrial Internet of Things (IIoT) systems have become integral to smart manufacturing, yet their growing connectivity has also exposed them to significant cybersecurity threats. Traditional intrusion detection systems (IDS) often rely on centralized architectures that raise concerns over data privacy, latency, and single points of failure. In this work, we propose a novel Federated Learning-Enhanced Blockchain Framework (FL-BCID) for privacy-preserving intrusion detection tailored for IIoT environments. Our architecture combines federated learning (FL) to ensure decentralized model training with blockchain technology to guarantee data integrity, trust, and tamper resistance across IIoT nodes. We design a lightweight intrusion detection model collaboratively trained using FL across edge devices without exposing sensitive data. A smart contract-enabled blockchain system records model updates and anomaly scores to establish accountability. Experimental evaluations using the ToN-IoT and N-BaIoT datasets demonstrate the superior performance of our framework, achieving 97.3% accuracy while reducing communication overhead by 41% compared to baseline centralized methods. Our approach ensures privacy, scalability, and robustness-critical for secure industrial operations. The proposed FL-BCID system provides a promising solution for enhancing trust and privacy in modern IIoT security architectures.
- Abstract(参考訳): 産業用IoT(Industrial Internet of Things, IIoT)システムはスマートマニュファクチャリングに不可欠なものになっています。
従来の侵入検知システム(IDS)は、データプライバシやレイテンシ、単一障害点に対する懸念を高める集中型アーキテクチャに依存することが多い。
本研究では,IIoT環境に適したプライバシ保護侵入検出のための新しいFB(Federated Learning-Enhanced Blockchain Framework)を提案する。
当社のアーキテクチャでは、フェデレーション学習(FL)とブロックチェーンテクノロジを併用して、データ完全性、信頼性、IIoTノード間の耐性の改ざんを保証しています。
エッジデバイス上でFLを用いて協調的に訓練された軽量な侵入検知モデルの設計を行う。
スマートコントラクト対応ブロックチェーンシステムは、モデル更新と異常スコアを記録して、説明責任を確立する。
ToN-IoTデータセットとN-Ba IoTデータセットを用いた実験的評価は、ベースライン集中方式に比べて通信オーバーヘッドを41%削減しつつ、97.3%の精度で、我々のフレームワークの優れた性能を示している。
当社のアプローチは、セキュアな産業運用において、プライバシ、スケーラビリティ、堅牢性が不可欠であることを保証する。
提案されたFL-BCIDシステムは,現代的なIIoTセキュリティアーキテクチャにおける信頼性とプライバシ向上のための,有望なソリューションを提供する。
関連論文リスト
- Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
従来の集中型セキュリティ手法は、IoTネットワークにおけるプライバシ保護とリアルタイム脅威検出のバランスをとるのに苦労することが多い。
本研究では,IoT環境に特化したフェデレート学習駆動型サイバーセキュリティフレームワークを提案する。
局所的に訓練されたモデルのセキュアアグリゲーションは、同型暗号を用いて達成され、機密情報を漏らさずに協調学習が可能である。
論文 参考訳(メタデータ) (2025-02-14T23:11:51Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - FL-DABE-BC: A Privacy-Enhanced, Decentralized Authentication, and Secure Communication for Federated Learning Framework with Decentralized Attribute-Based Encryption and Blockchain for IoT Scenarios [0.0]
本研究は,IoT環境におけるデータプライバシとセキュリティの向上を目的とした,高度な学習(FL)フレームワークを提案する。
我々は、分散属性ベースの暗号化(DABE)、同型暗号化(HE)、セキュアマルチパーティ計算(SMPC)、技術を統合する。
従来のFLとは異なり、当社のフレームワークはIoTデバイス上で、セキュアで分散化された認証と暗号化を可能にする。
論文 参考訳(メタデータ) (2024-10-26T19:30:53Z) - A Trustworthy AIoT-enabled Localization System via Federated Learning and Blockchain [29.968086297894626]
そこで我々はDFLocというフレームワークを提案し,正確な3Dローカライゼーションを実現する。
具体的には、信頼性が高く正確な屋内位置決めシステムにおける単一点故障の問題に対処する。
悪意のあるノード攻撃の懸念を軽減するため、ブロックチェーン内にモデル検証機構を更新する。
論文 参考訳(メタデータ) (2024-07-08T04:14:19Z) - Federated Learning with Blockchain-Enhanced Machine Unlearning: A Trustworthy Approach [20.74679353443655]
我々は、ブロックチェーンをフェデレートされた学習と融合させるフレームワークを導入し、未学習の要求とアクションの不変記録を確実にする。
私たちの重要なコントリビューションは、アンラーニングプロセスの認証機構、データセキュリティとプライバシの強化、データ管理の最適化などです。
論文 参考訳(メタデータ) (2024-05-27T04:35:49Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) は,さまざまな現実のシナリオに対して,有望なソリューションとして注目されている。
しかし、データの分離とプライバシーに関する課題は、FLシステムの信頼性を脅かす。
論文 参考訳(メタデータ) (2023-02-21T12:52:12Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
セキュアでプライバシ保護されたコラボレーティブなIoT侵入検出を実現するために,階層的なブロックチェーンベースのフェデレーション学習フレームワークを提案する。
MLベースの侵入検出フレームワークの提案は、学習プロセスと組織データのプライバシを確保するために、階層的なフェデレーション付き学習アーキテクチャに従っている。
その結果は、データプライバシを保持しながら、広範囲の悪意あるアクティビティを検出できる、セキュアに設計されたMLベースの侵入検知システムである。
論文 参考訳(メタデータ) (2022-04-08T19:06:16Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Towards Communication-efficient and Attack-Resistant Federated Edge
Learning for Industrial Internet of Things [40.20432511421245]
federated edge learning(fel)は、産業用iot(internet of things)におけるエッジコンピューティングのためのグローバルなディープラーニングモデルを、エッジノードでトレーニング可能にする。
FELは、通信オーバーヘッドとデータプライバシの2つの重要な課題に直面している。
IIoTにおけるエッジコンピューティングのための通信効率とプライバシー強化型非同期FELフレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-08T14:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。