Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
- URL: http://arxiv.org/abs/2401.03302v4
- Date: Tue, 01 Jul 2025 15:31:37 GMT
- Title: Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
- Authors: Seyed Mohammad Hossein Hashemi, Leila Safari, Mohsen Hooshmand, Amirhossein Dadashzadeh Taromi,
- Abstract summary: We propose a clinically inspired framework for anomaly-resilient tumor detection and classification.<n> Detection leverages YOLOv8n fine-tuned on a realistically imbalanced dataset.<n>We also propose a novel Patient-to-Patient (PTP) metric that evaluates diagnostic reliability at the patient level.
- Score: 0.873811641236639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable diagnosis of brain tumors remains challenging due to low clinical incidence rates of such cases. However, this low rate is neglected in most of proposed methods. We propose a clinically inspired framework for anomaly-resilient tumor detection and classification. Detection leverages YOLOv8n fine-tuned on a realistically imbalanced dataset (1:9 tumor-to-normal ratio; 30,000 MRI slices from 81 patients). In addition, we propose a novel Patient-to-Patient (PTP) metric that evaluates diagnostic reliability at the patient level. Classification employs knowledge distillation: a Data Efficient Image Transformer (DeiT) student model is distilled from a ResNet152 teacher. The distilled ViT achieves an F1-score of 0.92 within 20 epochs, matching near teacher performance (F1=0.97) with significantly reduced computational resources. This end-to-end framework demonstrates high robustness in clinically representative anomaly-distributed data, offering a viable tool that adheres to realistic situations in clinics.
Related papers
- An Explainable AI-Enhanced Machine Learning Approach for Cardiovascular Disease Detection and Risk Assessment [0.0]
Heart disease remains a major global health concern.<n>Traditional diagnostic methods fail to accurately identify and manage heart disease risks.<n>Machine learning has the potential to significantly enhance the accuracy, efficiency, and speed of heart disease diagnosis.
arXiv Detail & Related papers (2025-07-15T10:38:38Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - MIL vs. Aggregation: Evaluating Patient-Level Survival Prediction Strategies Using Graph-Based Learning [52.231128973251124]
We compare various strategies for predicting survival at the WSI and patient level.
The former treats each WSI as an independent sample, mimicking the strategy adopted in other works.
The latter comprises methods to either aggregate the predictions of the several WSIs or automatically identify the most relevant slide.
arXiv Detail & Related papers (2025-03-29T11:14:02Z) - Artificial Intelligence-Driven Prognostic Classification of COVID-19 Using Chest X-rays: A Deep Learning Approach [0.0]
This study presents a high-accuracy deep learning model for classifying COVID-19 severity (Mild, Moderate, and Severe) using Chest X-ray images.<n>Our model achieved an average accuracy of 97%, with specificity of 99%, sensitivity of 87%, and an F1-score of 93.11%.<n>These results demonstrate the model's potential for real-world clinical applications.
arXiv Detail & Related papers (2025-03-17T15:27:21Z) - Real-Time Brain Tumor Detection in Intraoperative Ultrasound Using YOLO11: From Model Training to Deployment in the Operating Room [13.503074690080453]
Intraoperative ultrasound (ioUS) is a valuable tool in brain tumor surgery due to its versatility, affordability, and seamless integration into the surgical workflow.
This study aimed to enhance the interpretability of ioUS images by developing a real-time brain tumor detection system deployable in the operating room.
We collected 2D ioUS images from the Brain Tumor Intraoperative Database (BraTioUS) and the public ReMIND dataset, annotated with expert-refined tumor labels.
Using the YOLO11 architecture and its variants, we trained object detection models to identify brain tumors.
arXiv Detail & Related papers (2025-01-27T12:29:19Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.<n>This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
Lung diseases such as COVID-19, tuberculosis (TB), and pneumonia continue to be serious global health concerns.
Paramedics and scientists are working intensively to create a reliable and precise approach for early-stage COVID-19 diagnosis.
arXiv Detail & Related papers (2023-10-09T18:38:49Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
A public MRI dataset contains 3064 TI-weighted images from 233 patients with three variants of brain tumor, viz. meningioma, glioma, and pituitary tumor.
The dataset files were converted and preprocessed before indulging into the methodology which employs implementation and training of some well-known image segmentation deep learning models.
The experimental findings showed that among all the applied approaches, the recurrent residual U-Net which uses Adam reaches a Mean Intersection Over Union of 0.8665 and outperforms other compared state-of-the-art deep learning models.
arXiv Detail & Related papers (2023-04-29T13:33:21Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Deep Learning models for benign and malign Ocular Tumor Growth
Estimation [3.1558405181807574]
Clinicians often face issues in selecting suitable image processing algorithm for medical imaging data.
A strategy for the selection of a proper model is presented here.
arXiv Detail & Related papers (2021-07-09T05:40:25Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - A Survey and Analysis on Automated Glioma Brain Tumor Segmentation and
Overall Patient Survival Prediction [1.41414531071294]
The article aims to survey the advancement of automated methods for Glioma brain tumor segmentation.
It is also essential to make an objective evaluation of various models based on the benchmark.
The paper covers the complete gamut of brain tumor segmentation using handcrafted features to deep neural network models for Task 1.
arXiv Detail & Related papers (2021-01-26T07:22:52Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Brain Tumor Anomaly Detection via Latent Regularized Adversarial Network [34.81845999071626]
We propose an innovative brain tumor abnormality detection algorithm.
The semi-supervised anomaly detection model is proposed in which only healthy (normal) brain images are trained.
arXiv Detail & Related papers (2020-07-09T12:12:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.