論文の概要: Structural Optimization of Factor Graphs for Symbol Detection via
Continuous Clustering and Machine Learning
- arxiv url: http://arxiv.org/abs/2211.11406v1
- Date: Mon, 21 Nov 2022 12:31:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 23:39:56.666964
- Title: Structural Optimization of Factor Graphs for Symbol Detection via
Continuous Clustering and Machine Learning
- Title(参考訳): 連続クラスタリングと機械学習によるシンボル検出のための因子グラフの構造最適化
- Authors: Lukas Rapp, Luca Schmid, Andrej Rode, Laurent Schmalen
- Abstract要約: 機械学習を用いて、基礎となる因子グラフの構造をエンドツーエンドに最適化する。
本研究では,この手法とニューラル信念の伝播を併用して,特定のチャネルに対する後部シンボル検出性能を最大に近いものにする手法について検討した。
- 参考スコア(独自算出の注目度): 1.5293427903448018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel method to optimize the structure of factor graphs for
graph-based inference. As an example inference task, we consider symbol
detection on linear inter-symbol interference channels. The factor graph
framework has the potential to yield low-complexity symbol detectors. However,
the sum-product algorithm on cyclic factor graphs is suboptimal and its
performance is highly sensitive to the underlying graph. Therefore, we optimize
the structure of the underlying factor graphs in an end-to-end manner using
machine learning. For that purpose, we transform the structural optimization
into a clustering problem of low-degree factor nodes that incorporates the
known channel model into the optimization. Furthermore, we study the
combination of this approach with neural belief propagation, yielding
near-maximum a posteriori symbol detection performance for specific channels.
- Abstract(参考訳): 本稿では,因子グラフの構造をグラフベース推論に最適化する新しい手法を提案する。
例として,線形シンボル間干渉チャネルにおけるシンボル検出について考察する。
因子グラフフレームワークは、低複雑さのシンボル検出器を生成する可能性がある。
しかし、循環係数グラフ上の和積アルゴリズムは最適以下であり、その性能は基礎となるグラフに非常に敏感である。
そこで,機械学習を用いて,基礎となる因子グラフの構造をエンドツーエンドに最適化する。
その目的のために,構造最適化を,既知のチャネルモデルを最適化に組み込んだ低次因子ノードのクラスタリング問題に変換する。
さらに,本手法とニューラル信念伝搬の組合せについて検討し,特定のチャネルに対する後部シンボル検出性能を最大に近いものにした。
関連論文リスト
- Polynomial Graphical Lasso: Learning Edges from Gaussian Graph-Stationary Signals [18.45931641798935]
本稿では,Nudal信号からグラフ構造を学習する新しい手法であるPolynomial Graphical Lasso (PGL)を紹介する。
我々の重要な貢献は、グラフ上のガウス的および定常的な信号であり、グラフ学習ラッソの開発を可能にすることである。
論文 参考訳(メタデータ) (2024-04-03T10:19:53Z) - On the Optimal Recovery of Graph Signals [10.098114696565865]
グラフ信号処理問題に対して最適あるいはほぼ最適な正規化パラメータを演算する。
本結果は,グラフに基づく学習における古典的最適化手法の新しい解釈を提供する。
半合成グラフ信号処理データセットの数値実験における本手法の可能性について述べる。
論文 参考訳(メタデータ) (2023-04-02T07:18:11Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
グラフ信号解析と処理の利点を享受する統合グラフ信号サンプリングフレームワークを提案する。
キーとなる考え方は、各ユーザのアイテムのレーティングをアイテムイットグラフの頂点上の関数(信号)に変換することである。
オンライン設定では、グラフフーリエ領域における連続ランダムガウス雑音を考慮したベイズ拡張(BGS-IMC)を開発する。
論文 参考訳(メタデータ) (2023-02-08T08:17:43Z) - Graphon Pooling for Reducing Dimensionality of Signals and Convolutional
Operators on Graphs [131.53471236405628]
グラフ空間における[0, 1]2の分割上のグラフとグラフ信号の誘導的グラフ表現を利用する3つの方法を提案する。
これらの低次元表現がグラフとグラフ信号の収束列を構成することを証明している。
我々は,層間次元減少比が大きい場合,グラノンプーリングは文献で提案した他の手法よりも有意に優れていることを観察した。
論文 参考訳(メタデータ) (2022-12-15T22:11:34Z) - Causally-guided Regularization of Graph Attention Improves
Generalizability [69.09877209676266]
本稿では,グラフアテンションネットワークのための汎用正規化フレームワークであるCARを紹介する。
メソッド名は、グラフ接続に対するアクティブ介入の因果効果とアテンションメカニズムを一致させる。
ソーシャル・メディア・ネットワーク規模のグラフでは、CAR誘導グラフ再構成アプローチにより、グラフの畳み込み手法のスケーラビリティとグラフの注意力の向上を両立させることができる。
論文 参考訳(メタデータ) (2022-10-20T01:29:10Z) - Neural Topological Ordering for Computation Graphs [23.225391263047364]
エンコーダ-デコーダフレームワークを用いたトポロジ的順序付けのためのエンドツーエンドの機械学習に基づくアプローチを提案する。
このモデルでは,最大2kノードの合成グラフにおいて,いくつかのトポロジ的順序付けベースラインで,より高速に動作可能であることを示す。
論文 参考訳(メタデータ) (2022-07-13T00:12:02Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Low-complexity Near-optimum Symbol Detection Based on Neural Enhancement
of Factor Graphs [2.030567625639093]
本稿では,シンボル検出のための因子グラフフレームワークの線形シンボル間干渉チャネルへの応用について考察する。
ニューラルエンハンスメントによる因子グラフに基づくシンボル検出の性能向上のための戦略を開発し,評価する。
論文 参考訳(メタデータ) (2022-03-30T15:58:53Z) - Neural Enhancement of Factor Graph-based Symbol Detection [2.030567625639093]
シンボル検出のための因子グラフフレームワークの線形シンボル間干渉チャネルへの応用について検討する。
本稿では,循環係数グラフに基づくシンボル検出アルゴリズムの性能向上のための戦略を提案し,評価する。
論文 参考訳(メタデータ) (2022-03-07T12:25:24Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。