論文の概要: Sample-optimal classical shadows for pure states
- arxiv url: http://arxiv.org/abs/2211.11810v2
- Date: Mon, 13 May 2024 18:53:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 20:19:44.755018
- Title: Sample-optimal classical shadows for pure states
- Title(参考訳): 純状態に対するサンプル最適古典的影
- Authors: Daniel Grier, Hakop Pashayan, Luke Schaeffer,
- Abstract要約: 我々は、結合測定と独立測定の両方の設定において、純粋な状態に対する古典的なシャドウタスクを考察する。
独立測定では、$mathcal O(sqrtBd epsilon-1 + epsilon-2)$ sufficeを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the classical shadows task for pure states in the setting of both joint and independent measurements. The task is to measure few copies of an unknown pure state $\rho$ in order to learn a classical description which suffices to later estimate expectation values of observables. Specifically, the goal is to approximate $\mathrm{Tr}(O \rho)$ for any Hermitian observable $O$ to within additive error $\epsilon$ provided $\mathrm{Tr}(O^2)\leq B$ and $\lVert O \rVert = 1$. Our main result applies to the joint measurement setting, where we show $\tilde{\Theta}(\sqrt{B}\epsilon^{-1} + \epsilon^{-2})$ samples of $\rho$ are necessary and sufficient to succeed with high probability. The upper bound is a quadratic improvement on the previous best sample complexity known for this problem. For the lower bound, we see that the bottleneck is not how fast we can learn the state but rather how much any classical description of $\rho$ can be compressed for observable estimation. In the independent measurement setting, we show that $\mathcal O(\sqrt{Bd} \epsilon^{-1} + \epsilon^{-2})$ samples suffice. Notably, this implies that the random Clifford measurements algorithm of Huang, Kueng, and Preskill, which is sample-optimal for mixed states, is not optimal for pure states. Interestingly, our result also uses the same random Clifford measurements but employs a different estimator.
- Abstract(参考訳): 我々は、結合測定と独立測定の両方の設定において、純粋な状態に対する古典的なシャドウタスクを考察する。
このタスクは未知の純粋な状態のコピーを$\rho$で数回測定して古典的な記述を学習し、後に観測可能な値の期待値を推測するのに十分である。
具体的には、加算誤差$\epsilon$ provided $\mathrm{Tr}(O^2)\leq B$ と $\lVert O \rVert = 1$ で、任意のエルミート観測可能な $O$ を近似する。
ここでは、$\rho$のサンプルである$\tilde{\Theta}(\sqrt{B}\epsilon^{-1} + \epsilon^{-2})が必要であり、高い確率で成功するには十分であることを示す。
上界は、この問題で知られている以前の最良のサンプル複雑性の二次的な改善である。
下限については、ボトルネックは状態の学習速度ではなく、観測可能な推定のために$\rho$の古典的な記述がどれだけ圧縮できるかが分かる。
独立測定では、$\mathcal O(\sqrt{Bd} \epsilon^{-1} + \epsilon^{-2})$ sufficeを示す。
特にこれは、混合状態に最適なサンプル最適化であるHuang, Kueng, Preskillのランダムなクリフォード測定アルゴリズムが純粋な状態には最適でないことを意味する。
興味深いことに、我々の結果は同じランダムなクリフォード測定も使用していますが、異なる推定器を使用します。
関連論文リスト
- Optimal high-precision shadow estimation [22.01044188849049]
正式には、未知の混合状態$rhoinmathbbCdtimes d$のコピーを$O(log(m)/epsilon2)$に測定するプロトコルを提供します。
次元還元により、$epsilon$と$d$を再スケールして、$epsilon le O(d-1/2)$の政権に還元できることを示す。
論文 参考訳(メタデータ) (2024-07-18T19:42:49Z) - Principal eigenstate classical shadows [0.0]
未知の量子状態 $rho$ の多くのコピーを考えると、その主固有状態の古典的な記述を学ぶというタスクを考える。
固有値$lambda$でこのタスクをスケーリングするためのプロトコルを提案し、それが自然なアプローチの空間内で最適であることを示す。
論文 参考訳(メタデータ) (2024-05-22T19:13:05Z) - Better and Simpler Lower Bounds for Differentially Private Statistical
Estimation [7.693388437377614]
任意の$alpha le O(1)$に対して、ガウスの共分散をスペクトル誤差まで推定するには$tildeOmegaleft(fracd3/2alpha varepsilon + fracdalpha2right)$サンプルが必要である。
次に、有界な$k$thモーメントで重み付き分布の平均を推定するには$tildeOmegaleft(fracdalphak/(k-1) varepsilon +
論文 参考訳(メタデータ) (2023-10-10T04:02:43Z) - Memory Efficient And Minimax Distribution Estimation Under Wasserstein
Distance Using Bayesian Histograms [6.21295508577576]
例えば、$d 2v$の場合、ヒストグラムは特別なテキストメモリ効率特性を持ち、サンプルサイズが$nであるのに対して、$nd/2v$ binsはミニマックスレートの最適性を得るために必要であることを示す。
達成されたメモリフットプリントは、既存のミニマックス最適手順を$n$の係数で克服する。例えば、ボレル確率測度クラスのミニマックス推定器である経験的測度と比較した場合、フットプリントを$n1 - d/2v$に削減する。
論文 参考訳(メタデータ) (2023-07-19T16:13:20Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
この問題に対する効率的なSQアルゴリズムは、少なくとも$Omega(d1/2/(maxp, epsilon)2)$. のサンプル複雑性を必要とする。
我々の下限は、この1/epsilon$に対する二次的依存は、効率的なアルゴリズムに固有のものであることを示唆している。
論文 参考訳(メタデータ) (2023-07-13T18:59:28Z) - Quantum tomography using state-preparation unitaries [0.22940141855172028]
ユニタリへのアクセスが与えられると、$d$次元の量子状態の古典的記述を近似的に得るアルゴリズムを記述する。
状態の$varepsilon$-$ell$-approximationを得るには、$widetildeTheta(d/varepsilon)$ Unitaryのアプリケーションが必要です。
我々は、ランク=r$混合状態のシュターテン$q$最適推定値を得るための効率的なアルゴリズムを与える。
論文 参考訳(メタデータ) (2022-07-18T17:56:18Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
既知の滑らかな関数 $f$ の値を未知の点 $boldsymbolmu in mathbbRn$ で推定する問題について検討する。
我々は、各座標の重要性に応じてサンプルを学習するインスタンス適応アルゴリズムを設計し、少なくとも1-delta$の確率で$epsilon$の正確な推定値である$f(boldsymbolmu)$を返す。
論文 参考訳(メタデータ) (2022-03-18T18:50:52Z) - Optimal Mean Estimation without a Variance [103.26777953032537]
本研究では,データ生成分布の分散が存在しない環境での重み付き平均推定問題について検討する。
最小の信頼区間を$n,d,delta$の関数として得る推定器を設計する。
論文 参考訳(メタデータ) (2020-11-24T22:39:21Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z) - Locally Private Hypothesis Selection [96.06118559817057]
我々は、$mathcalQ$から$p$までの総変動距離が最良の分布に匹敵する分布を出力する。
局所的な差分プライバシーの制約は、コストの急激な増加を引き起こすことを示す。
提案アルゴリズムは,従来手法のラウンド複雑性を指数関数的に改善する。
論文 参考訳(メタデータ) (2020-02-21T18:30:48Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
我々は、他の攻撃モデルに対してスムースな手法を拡張することは困難であることを示す。
我々はCIFARに関する実験結果を示し,その理論を検証した。
論文 参考訳(メタデータ) (2020-02-08T22:02:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。