論文の概要: Deep-Learning-Based Computer Vision Approach For The Segmentation Of
Ball Deliveries And Tracking In Cricket
- arxiv url: http://arxiv.org/abs/2211.12009v1
- Date: Tue, 22 Nov 2022 04:55:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 16:42:05.586080
- Title: Deep-Learning-Based Computer Vision Approach For The Segmentation Of
Ball Deliveries And Tracking In Cricket
- Title(参考訳): 深層学習に基づくコンピュータビジョンによるクリケットにおける球の配送と追跡のセグメンテーション
- Authors: Kumail Abbas, Muhammad Saeed, M. Imad Khan, Khandakar Ahmed, Hua Wang
- Abstract要約: 本稿では,ボールのみを届ける映像を分割抽出する手法を提案する。
オブジェクト検出モデルを適用して,映像を正確に抽出する手法を提案する。
これらのビデオショットにおけるボール追跡は、提案したデータセットの有用性のサンプルとして、別のRetinaNetモデルを使用して行われる。
- 参考スコア(独自算出の注目度): 4.021584094339975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been a significant increase in the adoption of technology in
cricket recently. This trend has created the problem of duplicate work being
done in similar computer vision-based research works. Our research tries to
solve one of these problems by segmenting ball deliveries in a cricket
broadcast using deep learning models, MobileNet and YOLO, thus enabling
researchers to use our work as a dataset for their research. The output from
our research can be used by cricket coaches and players to analyze ball
deliveries which are played during the match. This paper presents an approach
to segment and extract video shots in which only the ball is being delivered.
The video shots are a series of continuous frames that make up the whole scene
of the video. Object detection models are applied to reach a high level of
accuracy in terms of correctly extracting video shots. The proof of concept for
building large datasets of video shots for ball deliveries is proposed which
paves the way for further processing on those shots for the extraction of
semantics. Ball tracking in these video shots is also done using a separate
RetinaNet model as a sample of the usefulness of the proposed dataset. The
position on the cricket pitch where the ball lands is also extracted by
tracking the ball along the y-axis. The video shot is then classified as a
full-pitched, good-length or short-pitched delivery.
- Abstract(参考訳): 最近、クリケットにおけるテクノロジーの採用が大幅に増加している。
この傾向は、同様のコンピュータビジョンに基づく研究で行われている重複作業の問題を生み出している。
我々の研究は、ディープラーニングモデルであるMobileNetとYOLOを使ってクリケット放送でボールの配送をセグメント化することで、これらの問題の1つを解決しようとしている。
我々の研究の成果はクリケットのコーチや選手が試合中に行われるボールの成果を分析するのに利用できる。
本稿では,ボールのみを配信する映像をセグメント化して抽出する手法を提案する。
ビデオ撮影は、ビデオの全シーンを構成する一連の連続したフレームである。
被写体検出モデルは、映像の正確な抽出という観点で高い精度に達するために適用される。
ボール配達のための大規模な映像データセットを構築するための概念実証が提案され、意味論の抽出のためにこれらのショットをさらに処理する方法が提案されている。
これらのビデオショットにおけるボール追跡は、提案したデータセットの有用性のサンプルとして、別のRetinaNetモデルを使用して行われる。
また、Y軸に沿ってボールを追跡することにより、ボールが着地するクリケットピッチ上の位置も抽出する。
ビデオ撮影は、完全なピッチ、良い長さ、短いピッチのデリバリに分類される。
関連論文リスト
- SoccerNet Game State Reconstruction: End-to-End Athlete Tracking and Identification on a Minimap [102.5232204867158]
我々は、ゲーム状態再構成のタスクを形式化し、フットボールビデオに焦点を当てた新しいゲーム状態再構成データセットである、サッカーネット-GSRを紹介する。
SoccerNet-GSRは、ピッチローカライゼーションとカメラキャリブレーションのための937万行のアノテートにより、30秒間の200の動画シーケンスで構成されている。
我々の実験は、GSRは挑戦的な新しい課題であり、将来の研究の場を開くことを示している。
論文 参考訳(メタデータ) (2024-04-17T12:53:45Z) - Dense Video Object Captioning from Disjoint Supervision [77.47084982558101]
本稿では,高密度ビデオオブジェクトキャプションのための新しいタスクとモデルを提案する。
このタスクは、ビデオにおける空間的および時間的局所化を統一する。
我々は、この新しいタスクの強力なベースラインにおいて、我々のモデルがどのように改善されているかを示す。
論文 参考訳(メタデータ) (2023-06-20T17:57:23Z) - Event Detection in Football using Graph Convolutional Networks [0.0]
ビデオシーケンスの各フレームにおけるプレーヤとボールをグラフとしてモデル化する方法を示す。
本稿では,各アクションの周囲に存在する時間的コンテキストをモデル化するためのグラフ畳み込み層とプール法について述べる。
論文 参考訳(メタデータ) (2023-01-24T14:52:54Z) - Sports Video Analysis on Large-Scale Data [10.24207108909385]
本稿では,スポーツビデオにおける自動機械記述のモデル化について検討する。
スポーツビデオ分析のためのNBAデータセット(NSVA)を提案する。
論文 参考訳(メタデータ) (2022-08-09T16:59:24Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
本稿では,各30の200列からなる複数物体追跡のための新しいデータセットを提案する。
データセットは、バウンディングボックスとトラックレットIDで完全に注釈付けされている。
分析の結果,サッカービデオにおける複数の選手,審判,ボール追跡が解決されるには程遠いことがわかった。
論文 参考訳(メタデータ) (2022-04-14T12:22:12Z) - Ball 3D localization from a single calibrated image [1.2891210250935146]
本研究では,画素内の球径を推定し,実球径の知識をメートル単位で利用することにより,単一画像上の課題に対処することを提案する。
このアプローチは、ボールが(部分的にも)見えるようなあらゆるゲーム状況に適しています。
3つのバスケットボールデータセットの検証により,我々のモデルがボール3Dのローカライゼーションに顕著な予測を与えることが明らかとなった。
論文 参考訳(メタデータ) (2022-03-30T19:38:14Z) - Camera Calibration and Player Localization in SoccerNet-v2 and
Investigation of their Representations for Action Spotting [61.92132798351982]
大規模サッカーネットデータセット上で,最近のニューラルネットワークアーキテクチャにおいて,強力な商用キャリブレーションツールを蒸留する。
そこで我々は,キャリブレーション結果とプレイヤーのローカライゼーションの3つの方法を提案する。
soccernet-v2のアクションスポッティングタスクに、現在のベストアーキテクチャ内でこれらの表現を利用する。
論文 参考訳(メタデータ) (2021-04-19T14:21:05Z) - SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of
Broadcast Soccer Videos [71.72665910128975]
SoccerNet-v2 は SoccerNet ビデオデータセット用の手動アノテーションの大規模なコーパスである。
SoccerNetの500の未トリミングサッカービデオの中で、約300万のアノテーションをリリースしています。
サッカーの領域における現在のタスクを拡張し、アクションスポッティング、カメラショットセグメンテーション、境界検出を含む。
論文 参考訳(メタデータ) (2020-11-26T16:10:16Z) - A Unified Framework for Shot Type Classification Based on Subject
Centric Lens [89.26211834443558]
主観的誘導ネットワーク(SGNet)を用いたショット型認識のための学習フレームワークを提案する。
SGNetは、ショットの主題と背景を2つのストリームに分け、それぞれがスケールとムーブメントタイプの分類のための別々のガイダンスマップとして機能する。
大規模なデータセットであるMovieShotsを構築し、7Kフィルムトレーラーから46K枚の写真と、それらのスケールとムーブメントのアノテーションを含む。
論文 参考訳(メタデータ) (2020-08-08T15:49:40Z) - Learning to Play Cup-and-Ball with Noisy Camera Observations [2.6931502677545947]
球技に対する学習モデルに基づく制御戦略を提案する。
Universal Robots UR5eのマニピュレータアームは、ケンダマのカップの1つでボールをキャッチすることを学ぶ。
論文 参考訳(メタデータ) (2020-07-19T02:22:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。