論文の概要: Event Detection in Football using Graph Convolutional Networks
- arxiv url: http://arxiv.org/abs/2301.10052v1
- Date: Tue, 24 Jan 2023 14:52:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 13:25:52.214328
- Title: Event Detection in Football using Graph Convolutional Networks
- Title(参考訳): グラフ畳み込みネットワークを用いたサッカーにおけるイベント検出
- Authors: Aditya Sangram Singh Rana
- Abstract要約: ビデオシーケンスの各フレームにおけるプレーヤとボールをグラフとしてモデル化する方法を示す。
本稿では,各アクションの周囲に存在する時間的コンテキストをモデル化するためのグラフ畳み込み層とプール法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The massive growth of data collection in sports has opened numerous avenues
for professional teams and media houses to gain insights from this data. The
data collected includes per frame player and ball trajectories, and event
annotations such as passes, fouls, cards, goals, etc. Graph Convolutional
Networks (GCNs) have recently been employed to process this highly unstructured
tracking data which can be otherwise difficult to model because of lack of
clarity on how to order players in a sequence and how to handle missing objects
of interest. In this thesis, we focus on the goal of automatic event detection
from football videos. We show how to model the players and the ball in each
frame of the video sequence as a graph, and present the results for graph
convolutional layers and pooling methods that can be used to model the temporal
context present around each action.
- Abstract(参考訳): スポーツにおけるデータ収集の膨大な増加は、このデータから洞察を得るために、プロチームやメディアハウスに多くの道を開いた。
収集されたデータは、フレーム毎のプレーヤとボールの軌跡、パス、ファウル、カード、ゴールなどのイベントアノテーションを含む。
グラフ畳み込みネットワーク(GCN)は、最近この高度に構造化されていない追跡データを処理するために採用されている。
本論文では,サッカー映像からのイベント自動検出の目標に焦点を当てた。
ビデオシーケンスの各フレームにおけるプレイヤーとボールをグラフとしてモデル化する方法を示し、グラフ畳み込み層および各アクションの周辺に存在する時間的コンテキストのモデル化に使用できるプーリング手法の結果を示す。
関連論文リスト
- Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
マルチタスク学習に基づく新しいDynSGGモデルDynSGG-MTLを提案する。
長期的人間の行動は、大域的な制約に適合する複数のシーングラフを生成するためにモデルを監督し、尾の述語を学べないモデルを避ける。
論文 参考訳(メタデータ) (2023-08-10T01:24:25Z) - Towards Active Learning for Action Spotting in Association Football
Videos [59.84375958757395]
フットボールビデオの分析は困難であり、微妙で多様な時間的パターンを特定する必要がある。
現在のアルゴリズムは、限られた注釈付きデータから学ぶ際に大きな課題に直面している。
次にアノテートすべき最も情報に富んだビデオサンプルを選択する能動的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-09T11:50:41Z) - Infusing Commonsense World Models with Graph Knowledge [89.27044249858332]
オープンワールドテキストアドベンチャーゲームにおける物語生成の設定について検討する。
基礎となるゲーム状態のグラフ表現は、接地グラフ表現と自然言語記述とアクションの両方を消費し出力するモデルを訓練するために使用することができる。
論文 参考訳(メタデータ) (2023-01-13T19:58:27Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
アクションスポッティングには、ゲームのダイナミクス、イベントの複雑さ、ビデオシーケンスのバリエーションを理解することが含まれる。
本研究では, (a) 選手, 審判, ゴールキーパーをグラフのノードとして識別し, および (b) 時間的相互作用をグラフのシーケンスとしてモデル化することによって, 前者に焦点を当てる。
プレーヤ識別タスクでは,他のモダリティと組み合わせることで,平均mAPの57.83%の総合的な性能が得られる。
論文 参考訳(メタデータ) (2022-11-22T15:23:53Z) - Graph Neural Networks to Predict Sports Outcomes [0.0]
スポーツに依存しないグラフによるゲーム状態の表現を導入する。
次に、提案したグラフ表現をグラフニューラルネットワークの入力として使用し、スポーツ結果を予測する。
論文 参考訳(メタデータ) (2022-07-28T14:45:02Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
本稿では,各30の200列からなる複数物体追跡のための新しいデータセットを提案する。
データセットは、バウンディングボックスとトラックレットIDで完全に注釈付けされている。
分析の結果,サッカービデオにおける複数の選手,審判,ボール追跡が解決されるには程遠いことがわかった。
論文 参考訳(メタデータ) (2022-04-14T12:22:12Z) - Automatic event detection in football using tracking data [0.0]
本研究では,すべての選手と球の座標の追跡データを用いて,サッカーイベントを自動的に抽出するフレームワークを提案する。
提案手法は, 1) ボールが保持されていない時間間隔において, ボールが保持されているかのモデルと, ボールが保持されていない時間間隔の異なる選手構成の2つのモデルから成り立っている。
論文 参考訳(メタデータ) (2022-02-01T23:20:40Z) - RMS-Net: Regression and Masking for Soccer Event Spotting [52.742046866220484]
イベントラベルとその時間的オフセットを同時に予測できる,軽量でモジュール化されたアクションスポッティングネットワークを開発した。
SoccerNetデータセットでテストし、標準機能を使用して、完全な提案は3平均mAPポイントで現在の状態を超えます。
論文 参考訳(メタデータ) (2021-02-15T16:04:18Z) - Automatic Pass Annotation from Soccer VideoStreams Based on Object
Detection and LSTM [6.87782863484826]
PassNetは、サッカーで最も頻繁なイベント、すなわちパスをビデオストリームから認識する方法である。
その結果,パス検出の精度が向上し,良好な結果が得られた。
PassNetは自動イベントアノテーションシステムへの第一歩です。
論文 参考訳(メタデータ) (2020-07-13T16:14:41Z) - Event detection in coarsely annotated sports videos via parallel multi
receptive field 1D convolutions [14.30009544149561]
スポーツビデオ分析のような問題では、正確なフレームレベルのアノテーションと正確なイベント時間を得るのは難しい。
粗い注釈付きビデオにおけるイベント検出の課題を提案する。
本稿では,提案課題に対する多層時間畳み込みネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-04-13T19:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。