論文の概要: Differentially Private Heatmaps
- arxiv url: http://arxiv.org/abs/2211.13454v1
- Date: Thu, 24 Nov 2022 07:47:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 12:37:09.943368
- Title: Differentially Private Heatmaps
- Title(参考訳): 個人別ヒートマップ
- Authors: Badih Ghazi, Junfeng He, Kai Kohlhoff, Ravi Kumar, Pasin Manurangsi,
Vidhya Navalpakkam, Nachiappan Valliappan
- Abstract要約: ユーザのプライバシーを保護しながら,ユーザの集約データからヒートマップを生成するタスクについて検討する。
このタスクに対して差分プライベート(DP)アルゴリズムを提案し、実世界のデータセット上で従来のアルゴリズムよりも優位性を示す。
- 参考スコア(独自算出の注目度): 41.787298418108534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of producing heatmaps from users' aggregated data while
protecting their privacy. We give a differentially private (DP) algorithm for
this task and demonstrate its advantages over previous algorithms on real-world
datasets.
Our core algorithmic primitive is a DP procedure that takes in a set of
distributions and produces an output that is close in Earth Mover's Distance to
the average of the inputs. We prove theoretical bounds on the error of our
algorithm under a certain sparsity assumption and that these are near-optimal.
- Abstract(参考訳): ユーザの集約データからヒートマップを生成するタスクを,プライバシを保護しながら検討する。
このタスクに対して差分プライベート(DP)アルゴリズムを提案し、実世界のデータセット上で従来のアルゴリズムよりも優位性を示す。
我々の中心となるアルゴリズムプリミティブはDPプロシージャであり、一連の分布を取り込み、アース・モーバーの距離から入力の平均までの距離に近い出力を生成する。
我々は、ある空間的仮定の下でのアルゴリズムの誤差に関する理論的境界を証明し、これらがほぼ最適であることを示す。
関連論文リスト
- Individualized Privacy Accounting via Subsampling with Applications in Combinatorial Optimization [55.81991984375959]
本研究では、以下の簡単な観察を通して、個別化されたプライバシ会計を解析する新しい手法を提案する。
我々は、分解可能な部分モジュラーおよびセットアルゴリズム被覆を含む、プライベート最適化問題に対するいくつかの改良されたアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-05-28T19:02:30Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Differentially Private Federated Learning via Inexact ADMM with Multiple
Local Updates [0.0]
我々は,複数の局所的な更新を施した乗算器アルゴリズムのDP不正確な交互方向法を開発した。
当社のアルゴリズムでは,各イテレーション毎に$barepsilon$-DPを提供しており,$barepsilon$はユーザが管理するプライバシ予算である。
提案アルゴリズムは,既存のDPアルゴリズムと比較してテストエラーを少なくとも31%削減すると同時に,データプライバシのレベルが同じであることを実証する。
論文 参考訳(メタデータ) (2022-02-18T19:58:47Z) - Towards Sparse Federated Analytics: Location Heatmaps under Distributed
Differential Privacy with Secure Aggregation [15.569382274788234]
我々は、数百万のユーザデバイスから分散化されたデータにまたがって、位置情報のヒートマップをプライベートに生成するスケーラブルなアルゴリズムを設計する。
データの正確性を維持しつつ、ユーザのデバイス上でのリソース消費を最小限に抑えながら、データがサービスプロバイダに表示される前に、差分プライバシを確保することを目的としている。
論文 参考訳(メタデータ) (2021-11-03T17:19:05Z) - Differentially Private Federated Learning via Inexact ADMM [0.0]
差分プライバシー(DP)技術は、データプライバシを推論攻撃から保護するために、フェデレーション付き学習モデルに適用することができる。
我々は,信頼領域のサブプロブレム列を解く乗算器アルゴリズムのDP不正確な交互方向法を開発した。
提案アルゴリズムは,既存のDPアルゴリズムと比較してテストエラーを少なくとも22%削減すると同時に,データプライバシのレベルも同等に向上する。
論文 参考訳(メタデータ) (2021-06-11T02:28:07Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - No-Regret Algorithms for Private Gaussian Process Bandit Optimization [13.660643701487002]
プライバシー保護統計のレンズによるガウス過程(GP)帯域最適化の至るところでの問題点を考察する。
均一なカーネル近似器とランダムな摂動を組み合わせた差分プライベートGPバンディット最適化のためのソリューションを提案する。
我々のアルゴリズムは最適化手順を通して微分プライバシを保持し、予測のためのサンプルパスに明示的に依存しない。
論文 参考訳(メタデータ) (2021-02-24T18:52:24Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
有界非次元最適化のための差分プライベート(DP)アルゴリズムを提案する。
標準勾配法に対する経験的優位性について,2つの一般的なディープラーニング手法を実証する。
論文 参考訳(メタデータ) (2020-06-24T06:01:24Z) - A One-Pass Private Sketch for Most Machine Learning Tasks [48.17461258268463]
差別化プライバシ(DP)は、正式な証明可能な保証を通じて、プライバシとユーティリティのトレードオフを説明する魅力的なプライバシ定義である。
本稿では,回帰,分類,密度推定など,多数の機械学習タスクをサポートするプライベートスケッチを提案する。
このスケッチは,局所性に敏感なハッシュをインデックス化して,効率的なワンパスアルゴリズムで構築したランダムな一致テーブルで構成されている。
論文 参考訳(メタデータ) (2020-06-16T17:47:48Z) - Upper Bounds on the Generalization Error of Private Algorithms for
Discrete Data [31.122671977370416]
情報理論の観点からアルゴリズムの一般化能力について検討する。
特に、$epsilon$-DP および $mu$-GDP アルゴリズムの場合、この戦略で得られた限界を示す。
論文 参考訳(メタデータ) (2020-05-12T16:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。