論文の概要: Inverse Solvability and Security with Applications to Federated Learning
- arxiv url: http://arxiv.org/abs/2211.14115v2
- Date: Mon, 28 Nov 2022 11:30:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 14:19:24.979419
- Title: Inverse Solvability and Security with Applications to Federated Learning
- Title(参考訳): 逆可解性とセキュリティ : フェデレーション学習への応用
- Authors: Tomasz Piotrowski, Matthias Frey, Renato L.G. Cavalcante, Rafail
Ismailov
- Abstract要約: 本稿では,線形フォワードモデルに対する逆解法とセキュリティの概念を紹介する。
我々は,フェデレート学習の反復に参加する多数のユーザが,解答可能性とセキュリティの両方を高めるためにどのように活用できるかを示す。
- 参考スコア(独自算出の注目度): 11.535614190029365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the concepts of inverse solvability and security for a generic
linear forward model and demonstrate how they can be applied to models used in
federated learning. We provide examples of such models which differ in the
resulting inverse solvability and security as defined in this paper. We also
show how the large number of users participating in a given iteration of
federated learning can be leveraged to increase both solvability and security.
Finally, we discuss possible extensions of the presented concepts including the
nonlinear case.
- Abstract(参考訳): 本稿では,一般線形フォワードモデルにおける逆可解性と安全性の概念を紹介し,連体学習で用いられるモデルに適用する方法を示す。
本稿では,本論文で定義した逆可解性とセキュリティが異なるようなモデルの例を示す。
また,フェデレート学習の繰り返しに参加する多数のユーザが,解答可能性とセキュリティを高めるためにどのように活用できるかを示す。
最後に、非線形ケースを含む提示概念の拡張について論じる。
関連論文リスト
- Proof Flow: Preliminary Study on Generative Flow Network Language Model Tuning for Formal Reasoning [11.268313729426627]
本稿では,形式的推論の領域,特にニューラル定理証明設定における概念実証について述べる。
古典的な報酬最大化強化学習とは異なり、GFlowNetsは合成対象をサンプリングするための有望なアプローチとして登場した。
我々の初期の結果は、GFlowNetが検索環境におけるモデル性能を向上させる可能性を示している。
論文 参考訳(メタデータ) (2024-10-17T05:10:12Z) - Ensemble Deep Random Vector Functional Link Neural Network Based on Fuzzy Inference System [0.6437284704257459]
アンサンブルディープランダムベクトル汎関数リンク(edRVFL)ニューラルネットワークは、従来の人工ニューラルネットワークの限界に対処する能力を示した。
本稿では,ファジィ推論システム(edRVFL-FIS)に基づく新しいEDRVFLを提案する。
論文 参考訳(メタデータ) (2024-06-02T17:01:44Z) - Learning Point Spread Function Invertibility Assessment for Image Deconvolution [14.062542012968313]
ニューラルネットワークを用いて任意のPSFの可逆性を学習するために非線形アプローチを用いるメトリクスを提案する。
マッピングされたPSFとユニットインパルスとの差は、DLネットワークによるインバージョンの成功率が高いことを示している。
論文 参考訳(メタデータ) (2024-05-25T20:00:27Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
論文 参考訳(メタデータ) (2023-05-29T22:51:40Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
本稿では、RFedDisと呼ばれる新しい信頼性のあるフェデレーション・ディエンタングリング・ネットワークを提案する。
我々の知る限り、提案するRFedDisは、明らかな不確実性と特徴の混在に基づくFLアプローチを開発する最初の試みである。
提案するRFedDisは,他の最先端FL手法と比較して信頼性の高い優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T11:46:34Z) - Bort: Towards Explainable Neural Networks with Bounded Orthogonal
Constraint [90.69718495533144]
モデル説明可能性を改善するアルゴリズムであるBortを紹介する。
Bortに基づいて、追加のパラメータやトレーニングを必要とせずに、説明可能な対数サンプルを合成できる。
Bortは、MNIST上のResNetやDeiT、CIFAR-10、ImageNetなど、さまざまなアーキテクチャの分類精度を常に改善している。
論文 参考訳(メタデータ) (2022-12-18T11:02:50Z) - Knowledge Distillation for Federated Learning: a Practical Guide [8.2791533759453]
フェデレートラーニング(FL)は、センシティブな生データを集中的に収集することなく、ディープラーニングモデルのトレーニングを可能にする。
FLの最もよく使われるアルゴリズムはパラメータに基づくスキーム(フェデレート平均化など)である。
我々は、特定のFL問題に適したKDベースのアルゴリズムのレビューを行う。
論文 参考訳(メタデータ) (2022-11-09T08:31:23Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees [49.91477656517431]
量子化に基づく解法は、フェデレートラーニング(FL)において広く採用されている。
上記のプロパティをすべて享受する既存のメソッドはありません。
本稿では,SIGNSGDに基づく直感的かつ理論的に簡易な手法を提案し,そのギャップを埋める。
論文 参考訳(メタデータ) (2020-02-25T15:12:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。