論文の概要: Inverse Feasibility in Over-the-Air Federated Learning
- arxiv url: http://arxiv.org/abs/2211.14115v6
- Date: Fri, 24 May 2024 05:29:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 00:35:17.302273
- Title: Inverse Feasibility in Over-the-Air Federated Learning
- Title(参考訳): オーバー・ザ・エア・フェデレーション学習における逆可能性
- Authors: Tomasz Piotrowski, Rafail Ismayilov, Matthias Frey, Renato L. G. Cavalcante,
- Abstract要約: 線形フォワードモデルに対する逆実現可能性の概念をOTA FLアルゴリズムの強化ツールとして導入する。
この定義を用いて既存のOTA FLモデルを解析し、改善すべき領域を特定し、新しいOTA FLモデルを提案する。
- 参考スコア(独自算出の注目度): 7.600611392699628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the concept of inverse feasibility for linear forward models as a tool to enhance OTA FL algorithms. Inverse feasibility is defined as an upper bound on the condition number of the forward operator as a function of its parameters. We analyze an existing OTA FL model using this definition, identify areas for improvement, and propose a new OTA FL model. Numerical experiments illustrate the main implications of the theoretical results. The proposed framework, which is based on inverse problem theory, can potentially complement existing notions of security and privacy by providing additional desirable characteristics to networks.
- Abstract(参考訳): 線形フォワードモデルに対する逆実現可能性の概念をOTA FLアルゴリズムの強化ツールとして導入する。
逆実現可能性 (inverse fiasibility) は、フォワード演算子の条件数上の上限として、そのパラメータの関数として定義される。
この定義を用いて既存のOTA FLモデルを解析し、改善すべき領域を特定し、新しいOTA FLモデルを提案する。
数値実験は、理論結果の主な意味を説明している。
提案フレームワークは逆問題理論に基づいており,ネットワークに望ましい特徴を付加することにより,既存のセキュリティとプライバシの概念を補完する可能性がある。
関連論文リスト
- Ensemble Deep Random Vector Functional Link Neural Network Based on Fuzzy Inference System [0.6437284704257459]
アンサンブルディープランダムベクトル汎関数リンク(edRVFL)ニューラルネットワークは、従来の人工ニューラルネットワークの限界に対処する能力を示した。
本稿では,ファジィ推論システム(edRVFL-FIS)に基づく新しいEDRVFLを提案する。
論文 参考訳(メタデータ) (2024-06-02T17:01:44Z) - Learning Point Spread Function Invertibility Assessment for Image Deconvolution [14.062542012968313]
ニューラルネットワークを用いて任意のPSFの可逆性を学習するために非線形アプローチを用いるメトリクスを提案する。
マッピングされたPSFとユニットインパルスとの差は、DLネットワークによるインバージョンの成功率が高いことを示している。
論文 参考訳(メタデータ) (2024-05-25T20:00:27Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
論文 参考訳(メタデータ) (2023-05-29T22:51:40Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
本稿では、RFedDisと呼ばれる新しい信頼性のあるフェデレーション・ディエンタングリング・ネットワークを提案する。
我々の知る限り、提案するRFedDisは、明らかな不確実性と特徴の混在に基づくFLアプローチを開発する最初の試みである。
提案するRFedDisは,他の最先端FL手法と比較して信頼性の高い優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T11:46:34Z) - Bort: Towards Explainable Neural Networks with Bounded Orthogonal
Constraint [90.69718495533144]
モデル説明可能性を改善するアルゴリズムであるBortを紹介する。
Bortに基づいて、追加のパラメータやトレーニングを必要とせずに、説明可能な対数サンプルを合成できる。
Bortは、MNIST上のResNetやDeiT、CIFAR-10、ImageNetなど、さまざまなアーキテクチャの分類精度を常に改善している。
論文 参考訳(メタデータ) (2022-12-18T11:02:50Z) - Knowledge Distillation for Federated Learning: a Practical Guide [8.2791533759453]
フェデレートラーニング(FL)は、センシティブな生データを集中的に収集することなく、ディープラーニングモデルのトレーニングを可能にする。
FLの最もよく使われるアルゴリズムはパラメータに基づくスキーム(フェデレート平均化など)である。
我々は、特定のFL問題に適したKDベースのアルゴリズムのレビューを行う。
論文 参考訳(メタデータ) (2022-11-09T08:31:23Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - An Identifiable Double VAE For Disentangled Representations [24.963285614606665]
本稿では, 識別可能性に関する理論的保証を備えた, VAEに基づく新しい生成モデルを提案する。
我々は,最適表現を学習することで,潜伏者に対する条件付き事前情報を得る。
実験結果は,最先端のアプローチに対して優れた性能を示す。
論文 参考訳(メタデータ) (2020-10-19T09:59:31Z) - Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees [49.91477656517431]
量子化に基づく解法は、フェデレートラーニング(FL)において広く採用されている。
上記のプロパティをすべて享受する既存のメソッドはありません。
本稿では,SIGNSGDに基づく直感的かつ理論的に簡易な手法を提案し,そのギャップを埋める。
論文 参考訳(メタデータ) (2020-02-25T15:12:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。