論文の概要: Karyotype AI for Precision Oncology
- arxiv url: http://arxiv.org/abs/2211.14312v5
- Date: Fri, 21 Mar 2025 16:34:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 11:33:33.134480
- Title: Karyotype AI for Precision Oncology
- Title(参考訳): 精密腫瘍学のための核型AI
- Authors: Zahra Shamsi, Isaac Reid, Drew Bryant, Jacob Wilson, Xiaoyu Qu, Avinava Dubey, Konik Kothari, Mostafa Dehghani, Mariya Chavarha, Valerii Likhosherstov, Brian Williams, Michael Frumkin, Fred Appelbaum, Krzysztof Choromanski, Ali Bashir, Min Fang,
- Abstract要約: 血液がんの原因となる染色体異常を正確に検出できる機械学習手法を提案する。
パイプラインは一連の微調整されたVision Transformer上に構築されている。
臨床的に有意な del(5q) と t(9;22) 異常に対して, 94% AUC の高精度リコールスコアが得られた。
- 参考スコア(独自算出の注目度): 23.346771200529332
- License:
- Abstract: We present a machine learning method capable of accurately detecting chromosome abnormalities that cause blood cancers directly from microscope images of the metaphase stage of cell division. The pipeline is built on a series of fine-tuned Vision Transformers. Current state of the art (and standard clinical practice) requires expensive, manual expert analysis, whereas our pipeline takes only 15 seconds per metaphase image. Using a novel pretraining-finetuning strategy to mitigate the challenge of data scarcity, we achieve a high precision-recall score of 94% AUC for the clinically significant del(5q) and t(9;22) anomalies. Our method also unlocks zero-shot detection of rare aberrations based on model latent embeddings. The ability to quickly, accurately, and scalably diagnose genetic abnormalities directly from metaphase images could transform karyotyping practice and improve patient outcomes. We will make code publicly available.
- Abstract(参考訳): 細胞分裂の変相期の顕微鏡画像から直接、血液がんの原因となる染色体異常を正確に検出できる機械学習手法を提案する。
パイプラインは一連の微調整されたVision Transformer上に構築されている。
現在の最先端(および標準的な臨床実践)では、手作業による手作業による分析が必要になりますが、私たちのパイプラインは転移画像1枚につき15秒しかかかりません。
データ不足の課題を軽減するために,新しい事前学習ファインタニング戦略を用いて,臨床的に有意な del(5q) と t(9;22) 異常に対して,94% AUC の高精細スコアを達成した。
また,モデル潜伏埋め込みに基づく希少収差のゼロショット検出も行う。
メタフェーズ画像から直接遺伝子異常を迅速かつ正確に診断できる能力は、核タイピングの実践を変革し、患者の結果を改善する可能性がある。
コードを公開します。
関連論文リスト
- Embryo 2.0: Merging Synthetic and Real Data for Advanced AI Predictions [69.07284335967019]
2つのデータセットを使用して、2つの生成モデルをトレーニングします。
2-cell, 4-cell, 8-cell, morula, blastocyst など, 様々な細胞で合成胚画像を生成する。
これらは実画像と組み合わせて、胚細胞ステージ予測のための分類モデルを訓練した。
論文 参考訳(メタデータ) (2024-12-02T08:24:49Z) - Supervised Contrastive Learning for Fine-grained Chromosome Recognition [7.427070103487921]
染色体認識は核タイピングにおいて必須の課題であり、出生時欠陥診断や生医学研究において重要な役割を担っている。
既存の分類法は、染色体のクラス間類似性とクラス内変異のために重大な課題に直面している。
そこで本研究では,信頼性染色体分類のためのモデルに依存しない深層ネットワークを訓練するための教師付きコントラスト学習戦略を提案する。
論文 参考訳(メタデータ) (2023-12-12T06:12:21Z) - Masked conditional variational autoencoders for chromosome straightening [14.665481276886194]
核タイピングはヒト疾患における染色体異常の検出に重要である。
染色体は顕微鏡画像に容易に湾曲し、細胞遺伝学者が染色体の型を分析するのを防ぐ。
本稿では,前処理アルゴリズムと生成モデルを組み合わせた染色体ストレート化の枠組みを提案する。
論文 参考訳(メタデータ) (2023-06-25T05:11:41Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
我々は、DCNNを最先端の顔認識手法であるiResNetとArcFaceに置き換える影響を分析する。
提案するアンサンブルモデルにより,目視と目視の両障害に対する最先端のパフォーマンスが達成される。
論文 参考訳(メタデータ) (2022-11-12T23:28:54Z) - Few-Shot Meta Learning for Recognizing Facial Phenotypes of Genetic
Disorders [55.41644538483948]
分類の自動化と類似性検索は、医師が可能な限り早期に遺伝状態の診断を行うための意思決定を支援する。
従来の研究は分類問題としてこの問題に対処し、深層学習法を用いてきた。
本研究では,健常人の大規模なコーパスで訓練した顔認識モデルを用いて,顔の表情認識に移行した。
論文 参考訳(メタデータ) (2022-10-23T11:52:57Z) - Chromosome Segmentation Analysis Using Image Processing Techniques and
Autoencoders [0.0]
細胞遺伝学に基づく診断において, 染色体解析とメタフェーズ画像からの同定が重要な部分である。
染色体をメタフェーズから同定するプロセスは退屈なもので、訓練された人員と実行に数時間を要する。
そこで本研究では,染色体検出と染色体分割のプロセスを自動化する手法を提案する。
論文 参考訳(メタデータ) (2022-09-12T17:06:42Z) - Deep Learning based Automatic Detection of Dicentric Chromosome [0.0]
本稿では,フィールドエキスパートの最小限の介入を必要とする,完全にデータ駆動型フレームワークを提案する。
画像はWHO-BIODOSNETが記述したプロトコルに基づいてYOLOv4から抽出される。
中心性染色体と単中心性染色体の1:1分割で94.33%の精度を報告した。
論文 参考訳(メタデータ) (2022-04-17T15:11:13Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Adversarial Multiscale Feature Learning for Overlapping Chromosome
Segmentation [6.180155406275231]
染色体核型解析は疾患の診断と治療において非常に臨床的に重要である。
染色体のストリップ形状のため、画像化すると簡単に互いに重複します。
重なり合う染色体セグメンテーションの精度と適応性を向上させるために, 対角的マルチスケール特徴学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-22T06:04:22Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1次元畳み込みニューラルネットワークモデルは、短距離配列の分類のために訓練されている。
モデルは、ホールドアウトテストセット上で、高い平均精度で予測を提供する。
論文 参考訳(メタデータ) (2020-02-06T17:25:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。