論文の概要: Interpretable cancer cell detection with phonon microscopy using multi-task conditional neural networks for inter-batch calibration
- arxiv url: http://arxiv.org/abs/2403.17992v1
- Date: Tue, 26 Mar 2024 12:20:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 21:24:43.339351
- Title: Interpretable cancer cell detection with phonon microscopy using multi-task conditional neural networks for inter-batch calibration
- Title(参考訳): マルチタスク条件ニューラルネットワークを用いたフォノン顕微鏡によるバッチ間キャリブレーションによるがん細胞検出
- Authors: Yijie Zheng, Rafael Fuentes-Dominguez, Matt Clark, George S. D. Gordon, Fernando Perez-Cota,
- Abstract要約: 本稿では,バッチ間キャリブレーションを同時に実現する条件付きニューラルネットワークフレームワークを提案する。
異なる実験バッチをトレーニングし、検証することで、我々のアプローチを検証する。
このモデルを拡張して, 診断信号の再構成を行い, 疾患状態を示す有能な特徴の物理的解釈を可能にした。
- 参考スコア(独自算出の注目度): 39.759100498329275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in artificial intelligence (AI) show great potential in revealing underlying information from phonon microscopy (high-frequency ultrasound) data to identify cancerous cells. However, this technology suffers from the 'batch effect' that comes from unavoidable technical variations between each experiment, creating confounding variables that the AI model may inadvertently learn. We therefore present a multi-task conditional neural network framework to simultaneously achieve inter-batch calibration, by removing confounding variables, and accurate cell classification of time-resolved phonon-derived signals. We validate our approach by training and validating on different experimental batches, achieving a balanced precision of 89.22% and an average cross-validated precision of 89.07% for classifying background, healthy and cancerous regions. Classification can be performed in 0.5 seconds with only simple prior batch information required for multiple batch corrections. Further, we extend our model to reconstruct denoised signals, enabling physical interpretation of salient features indicating disease state including sound velocity, sound attenuation and cell-adhesion to substrate.
- Abstract(参考訳): 人工知能(AI)の進歩は、がん細胞を識別するためにフォノン顕微鏡(高周波超音波)データから基礎となる情報を明らかにする大きな可能性を示している。
しかし、この技術は、各実験の技術的バリエーションが避けられないことから生じる「バッチ効果」に悩まされ、AIモデルが必然的に学習する可能性のある相反する変数を生み出します。
そこで我々は,複数タスクの条件付きニューラルネットワークフレームワークを提案し,境界変数を除去し,時間分解されたフォノン信号の正確なセル分類を行うことにより,バッチ間キャリブレーションを同時に実現した。
背景, 健康, 癌領域の分類において, 比較精度89.22%, 平均クロスバリデーション精度89.07%, 評価精度89.07%を達成し, 異なる実験バッチの訓練, 検証を行うことにより, アプローチの有効性を検証した。
複数のバッチ修正に必要な単純なバッチ情報だけで0.5秒で分類を行うことができる。
さらに,本モデルを拡張して復号信号の再構成を行い,音速,音の減衰,細胞接着などの病気状態を示す健全な特徴を物理的に解釈する。
関連論文リスト
- Mixed Effects Deep Learning for the interpretable analysis of single cell RNA sequencing data by quantifying and visualizing batch effects [6.596656267996196]
シングルセルRNAシークエンシング(scRNA-seq)データは、しばしば技術的または生物学的バッチ効果によって構築される。
既存のディープラーニングモデルはこれらの効果を緩和するが、バッチ固有の情報を捨てることが多い。
本稿では,バッチ不変量(固定効果)とバッチ固有量(ランダム効果)を別々にモデル化したMEDL自動エンコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-11T00:10:48Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - Lightweight Convolution Transformer for Cross-patient Seizure Detection
in Multi-channel EEG Signals [0.0]
本研究では、新しいディープラーニングアーキテクチャに基づく軽量畳み込み変換器(LCT)を提案する。
変換器は、多チャンネル脳波(EEG)信号から空間的および時間的相関情報を同時に学習し、より小さなセグメント長で発作を検出する。
論文 参考訳(メタデータ) (2023-05-07T16:43:52Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
生体内試験は、医療機器の毒性に対する動物実験の代替手段である。
人間の疲労は、深層学習を魅力的なものにするために、エラー作成に重要な役割を果たします。
我々は、不完全ラベルのシームレス反復半監督補正(SISSI)を提案する。
本手法は,物体検出に適応的な早期学習補正技術を提供する。
論文 参考訳(メタデータ) (2022-08-05T18:52:20Z) - Improving the diagnosis of breast cancer based on biophysical ultrasound
features utilizing machine learning [0.0]
乳がん検出のための生物物理学的特徴に基づく機械学習手法を提案する。
以上より, 乳腺病変のタイプとサイズは, 分類では98.0%, 操作特性曲線では0.98以上であった。
論文 参考訳(メタデータ) (2022-07-13T23:53:09Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Machine learning based lens-free imaging technique for field-portable
cytometry [0.0]
提案手法の精度は98%に向上し,多くの細胞に対して5dB以上の信号が増強された。
モデルは、数回の学習イテレーションで新しいタイプのサンプルを学ぶために適応し、新しく導入されたサンプルをうまく分類することができる。
論文 参考訳(メタデータ) (2022-03-02T07:09:29Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - No Surprises: Training Robust Lung Nodule Detection for Low-Dose CT
Scans by Augmenting with Adversarial Attacks [18.369871933983706]
コンピュータビジョン技術を用いて結節を検出することで、肺がん検診のための胸部CTの感度と速度を向上させることができる。
多くの研究は、結節候補を検出するためにCNNを使用している。
また、CNNはトレーニングセットで表現されていないサンプルを一般化し、知覚不能なノイズの摂動を生じやすいように制限されることも知られている。
論文 参考訳(メタデータ) (2020-03-08T18:32:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。