論文の概要: Flip Initial Features: Generalization of Neural Networks for
Semi-supervised Node Classification
- arxiv url: http://arxiv.org/abs/2211.15081v2
- Date: Thu, 1 Dec 2022 06:03:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 14:07:39.763054
- Title: Flip Initial Features: Generalization of Neural Networks for
Semi-supervised Node Classification
- Title(参考訳): flip initial features: 半教師付きノード分類のためのニューラルネットワークの一般化
- Authors: Yoonhyuk Choi, Jiho Choi, Taewook Ko, Chong-Kwon Kim
- Abstract要約: グラフニューラルネットワーク(GNN)は、半教師付き設定下で広く利用されている。
本稿では,GNNにおけるオーバーフィッティング問題に対処するための新しい戦略を提案する。
提案手法はノード分類精度を最大40.2%向上させる。
- 参考スコア(独自算出の注目度): 1.3190581566723918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have been widely used under semi-supervised
settings. Prior studies have mainly focused on finding appropriate graph
filters (e.g., aggregation schemes) to generalize well for both homophilic and
heterophilic graphs. Even though these approaches are essential and effective,
they still suffer from the sparsity in initial node features inherent in the
bag-of-words representation. Common in semi-supervised learning where the
training samples often fail to cover the entire dimensions of graph filters
(hyperplanes), this can precipitate over-fitting of specific dimensions in the
first projection matrix. To deal with this problem, we suggest a simple and
novel strategy; create additional space by flipping the initial features and
hyperplane simultaneously. Training in both the original and in the flip space
can provide precise updates of learnable parameters. To the best of our
knowledge, this is the first attempt that effectively moderates the overfitting
problem in GNN. Extensive experiments on real-world datasets demonstrate that
the proposed technique improves the node classification accuracy up to 40.2 %
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、半教師付き設定下で広く利用されている。
以前の研究は主に、好気性グラフと好気性グラフの両方をよく一般化するための適切なグラフフィルタ(例えば集約スキーム)を見つけることに重点を置いてきた。
これらのアプローチは必須かつ効果的ではあるが、単語の袋表現に内在する初期ノードの特徴のスパースに苦しむ。
半教師付き学習では、トレーニングサンプルがグラフフィルタ(超平面)の全次元をカバーできない場合があり、これは第1のプロジェクター行列における特定の次元の過度な適合を生じさせる。
この問題に対処するために、我々は単純で新しい戦略を提案し、初期特徴と超平面を同時に反転させて追加空間を作成する。
オリジナルとフリップスペースの両方でのトレーニングは、学習可能なパラメータの正確な更新を提供することができる。
我々の知る限りでは、これはGNNのオーバーフィッティング問題を効果的に緩和する最初の試みである。
実世界のデータセットに対する大規模な実験により、提案手法はノード分類精度を最大40.2%改善することを示した。
関連論文リスト
- Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - A Unified Graph Selective Prompt Learning for Graph Neural Networks [20.595782116049428]
Graph Prompt Feature(GPF)は、Graph Neural Networks(GNN)のトレーニング済みモデルを適応することに成功した。
GNNファインチューニングのための新しいグラフ選択型プロンプト特徴学習(GSPF)を提案する。
論文 参考訳(メタデータ) (2024-06-15T04:36:40Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
本研究では,ディープ・インバーチブル・ニューラルネットワークを用いた条件生成について述べる。
私たちの目標は,前処理と後処理の予測と生成を同時に行うことにあるので,エンドツーエンドのトレーニングアプローチを採用しています。
論文 参考訳(メタデータ) (2022-06-02T17:28:33Z) - Learning heterophilious edge to drop: A general framework for boosting
graph neural networks [19.004710957882402]
本研究は, グラフ構造を最適化することにより, ヘテロフィリの負の影響を緩和することを目的とする。
LHEと呼ばれる構造学習手法を提案する。
emphLHEによるGNNの性能改善は, ホモフィリレベルの全スペクトルにわたる複数のデータセットで実証された。
論文 参考訳(メタデータ) (2022-05-23T14:07:29Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Training Robust Graph Neural Networks with Topology Adaptive Edge
Dropping [116.26579152942162]
グラフニューラルネットワーク(GNN)は、グラフ構造情報を利用してネットワークデータから表現をモデル化する処理アーキテクチャである。
彼らの成功にもかかわらず、GNNは限られた訓練データから得られる準最適一般化性能に悩まされている。
本稿では、一般化性能を改善し、堅牢なGNNモデルを学習するためのトポロジ適応エッジドロップ法を提案する。
論文 参考訳(メタデータ) (2021-06-05T13:20:36Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) は、グラフベースのデータセットで半教師付き分類を行うツールとして成功している。
本稿では,三部フィルタ空間が高密度グラフを対象とする新しいGCN変種を提案する。
論文 参考訳(メタデータ) (2020-08-03T08:48:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。