Content-Based Medical Image Retrieval with Opponent Class Adaptive
Margin Loss
- URL: http://arxiv.org/abs/2211.15371v1
- Date: Tue, 22 Nov 2022 17:05:30 GMT
- Title: Content-Based Medical Image Retrieval with Opponent Class Adaptive
Margin Loss
- Authors: \c{S}aban \"Ozt\"urk, Emin Celik, Tolga Cukur
- Abstract summary: We introduce a triplet-learning method for automated querying of medical image repositories based on a novel Opponent Class Adaptive Margin (OCAM) loss.
CBIR performance of OCAM is compared against state-of-the-art loss functions for representational learning on three public databases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Broadspread use of medical imaging devices with digital storage has paved the
way for curation of substantial data repositories. Fast access to image samples
with similar appearance to suspected cases can help establish a consulting
system for healthcare professionals, and improve diagnostic procedures while
minimizing processing delays. However, manual querying of large data
repositories is labor intensive. Content-based image retrieval (CBIR) offers an
automated solution based on dense embedding vectors that represent image
features to allow quantitative similarity assessments. Triplet learning has
emerged as a powerful approach to recover embeddings in CBIR, albeit
traditional loss functions ignore the dynamic relationship between opponent
image classes. Here, we introduce a triplet-learning method for automated
querying of medical image repositories based on a novel Opponent Class Adaptive
Margin (OCAM) loss. OCAM uses a variable margin value that is updated
continually during the course of training to maintain optimally discriminative
representations. CBIR performance of OCAM is compared against state-of-the-art
loss functions for representational learning on three public databases
(gastrointestinal disease, skin lesion, lung disease). Comprehensive
experiments in each application domain demonstrate the superior performance of
OCAM against baselines.
Related papers
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Adaptive Correspondence Scoring for Unsupervised Medical Image Registration [9.294341405888158]
Existing methods rely on image reconstruction as the primary supervision signal.
We propose an adaptive framework that re-weights the error residuals with a correspondence scoring map during training.
Our framework consistently outperforms other methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-12-01T01:11:22Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - FedMed-ATL: Misaligned Unpaired Brain Image Synthesis via Affine
Transform Loss [58.58979566599889]
We propose a novel self-supervised learning (FedMed) for brain image synthesis.
An affine transform loss (ATL) was formulated to make use of severely distorted images without violating privacy legislation.
The proposed method demonstrates advanced performance in both the quality of synthesized results under a severely misaligned and unpaired data setting.
arXiv Detail & Related papers (2022-01-29T13:45:39Z) - Constrained Deep One-Class Feature Learning For Classifying Imbalanced
Medical Images [4.211466076086617]
One-class classification has attracted increasing attention to address the data imbalance problem.
We propose a novel deep learning-based method to learn compact features.
Our method can learn more relevant features associated with the given class, making the majority and minority samples more distinguishable.
arXiv Detail & Related papers (2021-11-20T15:25:24Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
We propose a novel positional contrastive learning framework to generate contrastive data pairs.
The proposed PCL method can substantially improve the segmentation performance compared to existing methods in both semi-supervised setting and transfer learning setting.
arXiv Detail & Related papers (2021-06-16T22:15:28Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.