論文の概要: Latent Graph Inference using Product Manifolds
- arxiv url: http://arxiv.org/abs/2211.16199v2
- Date: Fri, 21 Apr 2023 21:50:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 23:20:40.057556
- Title: Latent Graph Inference using Product Manifolds
- Title(参考訳): 製品マニフォールドを用いた潜在グラフ推論
- Authors: Haitz S\'aez de Oc\'ariz Borde, Anees Kazi, Federico Barbero, Pietro
Li\`o
- Abstract要約: 遅延グラフ学習のための離散微分可能グラフモジュール(dDGM)を一般化する。
我々の新しいアプローチは、幅広いデータセットでテストされ、元のdDGMモデルよりも優れています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks usually rely on the assumption that the graph topology
is available to the network as well as optimal for the downstream task. Latent
graph inference allows models to dynamically learn the intrinsic graph
structure of problems where the connectivity patterns of data may not be
directly accessible. In this work, we generalize the discrete Differentiable
Graph Module (dDGM) for latent graph learning. The original dDGM architecture
used the Euclidean plane to encode latent features based on which the latent
graphs were generated. By incorporating Riemannian geometry into the model and
generating more complex embedding spaces, we can improve the performance of the
latent graph inference system. In particular, we propose a computationally
tractable approach to produce product manifolds of constant curvature model
spaces that can encode latent features of varying structure. The latent
representations mapped onto the inferred product manifold are used to compute
richer similarity measures that are leveraged by the latent graph learning
model to obtain optimized latent graphs. Moreover, the curvature of the product
manifold is learned during training alongside the rest of the network
parameters and based on the downstream task, rather than it being a static
embedding space. Our novel approach is tested on a wide range of datasets, and
outperforms the original dDGM model.
- Abstract(参考訳): グラフニューラルネットワークは通常、グラフトポロジがネットワークで利用可能であり、下流タスクに最適であるという仮定に依存する。
潜在グラフ推論は、モデルがデータの接続パターンが直接アクセスできない問題の固有グラフ構造を動的に学習することを可能にする。
本研究では,潜在グラフ学習のための離散微分可能グラフモジュール(ddgm)を一般化する。
元々のdDGMアーキテクチャはユークリッド平面を用いて、潜在グラフが生成される潜在特徴を符号化した。
リーマン幾何学をモデルに組み込んでより複雑な埋め込み空間を生成することにより、潜在グラフ推論システムの性能を向上させることができる。
特に,様々な構造の潜在特徴をエンコードできる定数曲率モデル空間の積多様体を生成できる計算可能な手法を提案する。
推定積多様体に写像された潜在表現は、最適化された潜在グラフを得るために、潜在グラフ学習モデルによって活用されるよりリッチな類似度測度を計算するために用いられる。
さらに、積多様体の曲率は、トレーニング中に他のネットワークパラメータと共に学習され、静的な埋め込み空間ではなく、下流のタスクに基づいて学習される。
我々の新しいアプローチは幅広いデータセットでテストされ、オリジナルのdDGMモデルよりも優れています。
関連論文リスト
- Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Equivariant Neural Operator Learning with Graphon Convolution [12.059797539633506]
本稿では3次元ユークリッド空間における連続関数間の写像を学習するための学習係数スキームと残留演算子層を結合した一般アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-17T23:28:22Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - A Deep Latent Space Model for Graph Representation Learning [10.914558012458425]
本稿では,従来の潜時変動に基づく生成モデルをディープラーニングフレームワークに組み込むために,有向グラフのための深潜時空間モデル(DLSM)を提案する。
提案モデルは,階層的変動型オートエンコーダアーキテクチャによって階層的に接続されるグラフ畳み込みネットワーク(GCN)エンコーダとデコーダから構成される。
実世界のデータセットにおける実験により,提案モデルがリンク予測とコミュニティ検出の両タスクにおける最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2021-06-22T12:41:19Z) - GRAND: Graph Neural Diffusion [15.00135729657076]
本稿では,連続拡散過程としてグラフの深層学習にアプローチするグラフニューラル拡散(GRAND)を提案する。
我々のモデルでは、層構造と位相は時間的および空間的作用素の離散化選択に対応する。
我々のモデルの成功の鍵は、データの摂動に対する安定性であり、これは暗黙的および明示的な離散化スキームの両方に対処する。
論文 参考訳(メタデータ) (2021-06-21T09:10:57Z) - Regularization of Mixture Models for Robust Principal Graph Learning [0.0]
D$次元データポイントの分布から主グラフを学習するために,Mixture Modelsの正規化バージョンを提案する。
モデルのパラメータは期待最大化手順によって反復的に推定される。
論文 参考訳(メタデータ) (2021-06-16T18:00:02Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z) - The Power of Graph Convolutional Networks to Distinguish Random Graph
Models: Short Version [27.544219236164764]
グラフ畳み込みネットワーク(GCN)はグラフ表現学習において広く使われている手法である。
サンプルグラフの埋め込みに基づいて異なるランダムグラフモデルを区別するGCNのパワーについて検討する。
論文 参考訳(メタデータ) (2020-02-13T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。