論文の概要: Operator inference with roll outs for learning reduced models from
scarce and low-quality data
- arxiv url: http://arxiv.org/abs/2212.01418v1
- Date: Fri, 2 Dec 2022 19:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 19:30:00.880501
- Title: Operator inference with roll outs for learning reduced models from
scarce and low-quality data
- Title(参考訳): 少ないデータと低品質データから縮小モデルを学ぶためのロールアウトによる演算子推論
- Authors: Wayne Isaac Tan Uy and Dirk Hartmann and Benjamin Peherstorfer
- Abstract要約: 本稿では、演算子推論によるデータ駆動モデリングと、ニューラル常微分方程式のロールアウトによる動的トレーニングを組み合わせることを提案する。
実験では,データのサンプル化やノイズの最大10%の汚染があっても,ロールアウトによる演算子推論が学習軌跡からの予測モデルを提供することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven modeling has become a key building block in computational science
and engineering. However, data that are available in science and engineering
are typically scarce, often polluted with noise and affected by measurement
errors and other perturbations, which makes learning the dynamics of systems
challenging. In this work, we propose to combine data-driven modeling via
operator inference with the dynamic training via roll outs of neural ordinary
differential equations. Operator inference with roll outs inherits
interpretability, scalability, and structure preservation of traditional
operator inference while leveraging the dynamic training via roll outs over
multiple time steps to increase stability and robustness for learning from
low-quality and noisy data. Numerical experiments with data describing shallow
water waves and surface quasi-geostrophic dynamics demonstrate that operator
inference with roll outs provides predictive models from training trajectories
even if data are sampled sparsely in time and polluted with noise of up to 10%.
- Abstract(参考訳): データ駆動モデリングは、計算科学と工学の重要な構成要素となっている。
しかし、科学や工学で利用可能なデータは通常、ノイズによって汚染され、測定エラーやその他の摂動によって影響を受けるため、システムのダイナミクスを学ぶことは困難である。
本研究では,演算子推論によるデータ駆動モデリングと,神経常微分方程式のロールアウトによる動的トレーニングを組み合わせることを提案する。
ロールアウトによるオペレータ推論は、従来のオペレータ推論の解釈可能性、スケーラビリティ、構造保存を継承し、複数ステップにわたるロールアウトによる動的トレーニングを活用して、低品質でノイズの多いデータから学ぶための安定性と堅牢性を向上させる。
浅海波と表面準地磁気力学を記述したデータを用いた数値実験により, ロールアウトによる演算子推論は, データが短時間でサンプリングされ, 最大10%のノイズで汚染された場合でも, 訓練軌道からの予測モデルを提供することを示した。
関連論文リスト
- Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
微分方程式を解くための11の最先端データ駆動モデルからなる総合ベンチマークスイートであるCodBenchを紹介する。
具体的には、Viz.、フィードフォワードニューラルネットワーク、ディープオペレータ回帰モデル、周波数ベースのニューラル演算子、トランスフォーマーアーキテクチャの4つの異なるカテゴリを評価する。
我々は、学習におけるオペレータの能力、ゼロショット超解像、データ効率、ノイズに対する堅牢性、計算効率を評価する広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-02T21:27:54Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Leveraging Neural Koopman Operators to Learn Continuous Representations
of Dynamical Systems from Scarce Data [0.0]
我々は、本質的に連続的な方法でダイナミクスを表現する新しいディープ・クープマン・フレームワークを提案する。
このフレームワークは、限られたトレーニングデータのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2023-03-13T10:16:19Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Deep Active Learning with Noise Stability [24.54974925491753]
ラベルのないデータの不確実性推定は、アクティブな学習に不可欠である。
本稿では,雑音の安定性を利用して不確実性を推定する新しいアルゴリズムを提案する。
本手法はコンピュータビジョン,自然言語処理,構造データ解析など,様々なタスクに適用可能である。
論文 参考訳(メタデータ) (2022-05-26T13:21:01Z) - Active operator inference for learning low-dimensional dynamical-system
models from noisy data [0.0]
ノイズは、既に小さな変動が軌道データによって記述された力学を歪めてしまうため、力学系モデルを学ぶための課題となる。
この研究は、科学的機械学習からの演算子推論に基づいて、ノイズで汚染された高次元状態軌跡から低次元モデルを推定する。
論文 参考訳(メタデータ) (2021-07-20T04:30:07Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Operator Inference and Physics-Informed Learning of Low-Dimensional
Models for Incompressible Flows [5.756349331930218]
本稿では,データからの非圧縮性流れに対する構造的低次モデル学習への新たなアプローチを提案する。
本研究では,速度と圧力の学習ダイナミクスを分離し,効率的な演算子推論手法を提案する。
論文 参考訳(メタデータ) (2020-10-13T21:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。