Ans\"atze for Noisy Variational Quantum Eigensolvers
- URL: http://arxiv.org/abs/2212.04323v1
- Date: Tue, 6 Dec 2022 17:57:41 GMT
- Title: Ans\"atze for Noisy Variational Quantum Eigensolvers
- Authors: Mafalda Ram\^oa
- Abstract summary: The Variational Quantum Eigensolver (VQE) has gained popularity as a contender for a chance at quantum advantage with near-term quantum computers.
Too deep ans"atze can hinder near-term viability, or lead to trainability issues that render the algorithm inefficient.
This thesis examines different ans"atze proposed for quantum chemistry, examining their noise-resilience and viability in state-of-the-art quantum computers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The hardware requirements of useful quantum algorithms remain unmet by the
quantum computers available today. Because it was designed to soften these
requirements, the Variational Quantum Eigensolver (VQE) has gained popularity
as a contender for a chance at quantum advantage with near-term quantum
computers. The ansatz, a parameterized circuit that prepares trial states, can
dictate the success (or lack thereof) of a VQE. Too deep ans\"atze can hinder
near-term viability, or lead to trainability issues that render the algorithm
inefficient. The purpose of this thesis was to analyse different ans\"atze
proposed for quantum chemistry, examining their noise-resilience and viability
in state-of-the-art quantum computers. In particular, dynamic ans\"atze
(ADAPT-VQEs) were explored, and the impact of the choice of pool and selection
criterion on their performance was analysed.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Benchmarking the Variational Quantum Eigensolver using different quantum
hardware [0.0]
The Variational Quantum Eigensolver (VQE) is a promising quantum algorithm for applications in chemistry.
We present results using the VQE for the simulation of the hydrogen molecule, comparing superconducting and ion trap quantum computers.
arXiv Detail & Related papers (2023-05-11T18:56:07Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - VQE Method: A Short Survey and Recent Developments [5.9640499950316945]
The variational quantum eigensolver (VQE) is a method that uses a hybrid quantum-classical computational approach to find eigenvalues and eigenvalues of a Hamiltonian.
VQE has been successfully applied to solve the electronic Schr"odinger equation for a variety of small molecules.
Modern quantum computers are not capable of executing deep quantum circuits produced by using currently available ansatze.
arXiv Detail & Related papers (2021-03-15T16:25:36Z) - A semi-agnostic ansatz with variable structure for quantum machine learning [0.3774866290142281]
Variational Quantum Algorithms (VQAs) offer a powerful, flexible paradigm for programming near-term quantum computers.
We present a variable structure approach to build ansatzes for VQAs.
We employ VAns in the variational quantum eigensolver for condensed matter and quantum chemistry applications.
arXiv Detail & Related papers (2021-03-11T14:58:40Z) - Variational Quantum Algorithms [1.9486734911696273]
Quantum computers promise to unlock applications such as large quantum systems or solving large-scale linear algebra problems.
Currently available quantum devices have serious constraints, including limited qubit numbers and noise processes that limit circuit depth.
Variational Quantum Algorithms (VQAs), which employ a classical simulation to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints.
arXiv Detail & Related papers (2020-12-16T21:00:46Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.