論文の概要: Physics-constrained deep learning postprocessing of temperature and
humidity
- arxiv url: http://arxiv.org/abs/2212.04487v1
- Date: Wed, 7 Dec 2022 09:31:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 16:49:45.111706
- Title: Physics-constrained deep learning postprocessing of temperature and
humidity
- Title(参考訳): 物理制約による温度・湿度の深層学習後処理
- Authors: Francesco Zanetta, Daniele Nerini, Tom Beucler and Mark A. Liniger
- Abstract要約: 深層学習に基づく後処理モデルにおける物理的整合性を実現することを提案する。
熱力学状態方程式を強制するためにニューラルネットワークを制約することは、物理的に一貫性のある予測をもたらす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weather forecasting centers currently rely on statistical postprocessing
methods to minimize forecast error. This improves skill but can lead to
predictions that violate physical principles or disregard dependencies between
variables, which can be problematic for downstream applications and for the
trustworthiness of postprocessing models, especially when they are based on new
machine learning approaches. Building on recent advances in physics-informed
machine learning, we propose to achieve physical consistency in deep
learning-based postprocessing models by integrating meteorological expertise in
the form of analytic equations. Applied to the post-processing of surface
weather in Switzerland, we find that constraining a neural network to enforce
thermodynamic state equations yields physically-consistent predictions of
temperature and humidity without compromising performance. Our approach is
especially advantageous when data is scarce, and our findings suggest that
incorporating domain expertise into postprocessing models allows to optimize
weather forecast information while satisfying application-specific
requirements.
- Abstract(参考訳): 気象予報センターは現在、予報誤差を最小限に抑えるために統計的後処理方法に依存している。
これにより、スキルは向上するが、物理的な原則に違反したり、変数間の依存関係を無視する予測につながる可能性がある。
物理インフォームド機械学習の最近の進歩に基づき,気象学の専門知識を解析方程式の形で統合し,深層学習に基づく後処理モデルにおける物理的整合性を実現することを提案する。
スイスの表層気象のプロセス後処理に適用すると、ニューラルネットワークが熱力学状態方程式を強制することは、性能を損なうことなく、温度と湿度の物理的に一貫性のある予測をもたらすことが分かる。
その結果、後処理モデルにドメインの専門知識を組み込むことで、アプリケーション固有の要件を満たしながら天気予報情報を最適化できることが示唆された。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
本研究では,デリー地域の温度予測精度を高めるために,ハイブリッドCNN-LSTMモデルを提案する。
モデルの構築とトレーニングには,包括的データ前処理や探索分析など,直接的および間接的手法を併用した。
実験結果から,CNN-LSTMモデルが従来の予測手法よりも精度と安定性の両面で優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-09-14T11:06:07Z) - Towards Physically Consistent Deep Learning For Climate Model Parameterizations [46.07009109585047]
パラメータ化は、気候予測において、系統的なエラーと大きな不確実性の主な原因である。
深層学習(DL)に基づくパラメータ化は、計算に高価で高解像度のショートシミュレーションのデータに基づいて訓練されており、気候モデルを改善するための大きな可能性を示している。
本稿では,DLに基づくパラメータ化のための効率的な教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-06T10:02:49Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Decomposing weather forecasting into advection and convection with neural networks [6.78786601630176]
本稿では,動的コアの水平移動と物理パラメータ化の垂直移動を別々に学習する,シンプルで効果的な機械学習モデルを提案する。
我々のモデルは、大気モデルにおける変数の遷移をシミュレートするための、新しく効率的な視点を提供する。
論文 参考訳(メタデータ) (2024-05-10T16:46:32Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
統計力学の重要な原理を実装した連続時間プロセスであるClimODEを提案する。
ClimODEは、値保存ダイナミクスによる正確な気象進化をモデル化し、ニューラルネットワークとしてグローバルな気象輸送を学習する。
提案手法は,大域的,地域的予測において,パラメータ化の桁違いで既存のデータ駆動手法より優れる。
論文 参考訳(メタデータ) (2024-04-15T06:38:21Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。