論文の概要: An approach to robust ICP initialization
- arxiv url: http://arxiv.org/abs/2212.05332v1
- Date: Sat, 10 Dec 2022 16:27:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 18:35:31.107711
- Title: An approach to robust ICP initialization
- Title(参考訳): ロバストicp初期化へのアプローチ
- Authors: Alexander Kolpakov, Michael Werman
- Abstract要約: 本稿では,ICP を非競合点群に適用可能な反復閉点 (ICP) アルゴリズムを初期化する手法を提案する。
また、ノイズに対する我々のアプローチの限界にもロバスト性を与えます。
- 参考スコア(独自算出の注目度): 77.45039118761837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this note, we propose an approach for initializing the Iterative Closest
Point (ICP) algorithm that allows us to apply ICP to unlabelled point clouds
that are related by rigid transformations. We also give bounds on the
robustness of our approach to noise. Numerical experiments confirm our
theoretical findings.
- Abstract(参考訳): 本稿では,厳密な変換によって関連づけられた未ラベルの点雲にICPを適用することができる反復クローズトポイント(ICP)アルゴリズムを初期化する手法を提案する。
ノイズに対する我々のアプローチの堅牢性にも限界がある。
数値実験により理論的な結果が確認された。
関連論文リスト
- Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
本稿では,アフィニティ行列からクラスタ情報を復元するための正規化プロジェクション行列近似フレームワークを提案する。
3つの異なるペナルティ関数について検討し, それぞれが有界, 正, スパースシナリオに対応するように調整した。
合成および実世界の両方のデータセットで行った数値実験により、我々の正規化射影行列近似アプローチはクラスタリング性能において最先端の手法を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-26T15:18:22Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Variable Substitution and Bilinear Programming for Aligning Partially Overlapping Point Sets [48.1015832267945]
本研究では,RPMアルゴリズムの最小化目的関数を用いて要求を満たす手法を提案する。
分岐とバウンド(BnB)アルゴリズムが考案され、パラメータのみに分岐し、収束率を高める。
実験による評価は,非剛性変形,位置雑音,外れ値に対する提案手法の高剛性を示す。
論文 参考訳(メタデータ) (2024-05-14T13:28:57Z) - Bounded Projection Matrix Approximation with Applications to Community
Detection [1.8876415010297891]
我々は,新たな微分可能凸ペナルティを導入し,乗算器の交互方向法(ADMM)を導出する。
数値実験により,アルゴリズムの競争相手に対する優位性を実証した。
論文 参考訳(メタデータ) (2023-05-21T06:55:10Z) - Gradient Based Clustering [72.15857783681658]
本稿では,クラスタリングの品質を計測するコスト関数の勾配を用いて,距離に基づくクラスタリングの一般的な手法を提案する。
アプローチは反復的な2段階の手順(クラスタ割り当てとクラスタセンターのアップデートの代替)であり、幅広い機能に適用できる。
論文 参考訳(メタデータ) (2022-02-01T19:31:15Z) - Determinantal consensus clustering [77.34726150561087]
本稿では,クラスタリングアルゴリズムのランダム再起動における決定点プロセス (DPP) の利用を提案する。
DPPは部分集合内の中心点の多様性を好んでいる。
DPPとは対照的に、この手法は多様性の確保と、すべてのデータフェースについて良好なカバレッジを得るために失敗することを示す。
論文 参考訳(メタデータ) (2021-02-07T23:48:24Z) - Rigid and Articulated Point Registration with Expectation Conditional
Maximization [20.096170794358315]
革新的なEMライクアルゴリズム、すなわちECMPR(Conditional Expectation Maximization for Point Registration)アルゴリズムを紹介します。
登録パラメータの推定の観点で、関連する結果について詳細に分析する。
堅固な登録を有形登録まで延長します。
論文 参考訳(メタデータ) (2020-12-09T17:36:11Z) - FKAConv: Feature-Kernel Alignment for Point Cloud Convolution [75.85619090748939]
多数の点畳み込み法を関連づけ解析するための定式化を提供する。
また、幾何学のないカーネル重み付けの推定を分離する独自の畳み込み変種も提案する。
分類とセマンティックセグメンテーションのベンチマークで競合する結果を示す。
論文 参考訳(メタデータ) (2020-04-09T10:12:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。