論文の概要: Mixed Supervision of Histopathology Improves Prostate Cancer
Classification from MRI
- arxiv url: http://arxiv.org/abs/2212.06336v1
- Date: Tue, 13 Dec 2022 02:34:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 14:20:28.808689
- Title: Mixed Supervision of Histopathology Improves Prostate Cancer
Classification from MRI
- Title(参考訳): 病理組織学の混合監督は前立腺癌をmriから分類する
- Authors: Abhejit Rajagopal, Antonio C. Westphalen, Nathan Velarde, Tim Ullrich,
Jeffry P. Simko, Hao Nguyen, Thomas A. Hope, Peder E. Z. Larson, Kirti
Magudia
- Abstract要約: MRIによる非侵襲的前立腺癌検出は、患者のケアに革命をもたらす可能性がある。
患者集団に適用可能な臨床上重要な前立腺癌を予測するためのMRIによる深達度学習法を提案する。
- 参考スコア(独自算出の注目度): 0.9395521049323435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-invasive prostate cancer detection from MRI has the potential to
revolutionize patient care by providing early detection of
clinically-significant disease (ISUP grade group >= 2), but has thus far shown
limited positive predictive value. To address this, we present an MRI-based
deep learning method for predicting clinically significant prostate cancer
applicable to a patient population with subsequent ground truth biopsy results
ranging from benign pathology to ISUP grade group~5. Specifically, we
demonstrate that mixed supervision via diverse histopathological ground truth
improves classification performance despite the cost of reduced concordance
with image-based segmentation. That is, where prior approaches have utilized
pathology results as ground truth derived from targeted biopsies and
whole-mount prostatectomy to strongly supervise the localization of clinically
significant cancer, our approach also utilizes weak supervision signals
extracted from nontargeted systematic biopsies with regional localization to
improve overall performance. Our key innovation is performing regression by
distribution rather than simply by value, enabling use of additional pathology
findings traditionally ignored by deep learning strategies. We evaluated our
model on a dataset of 973 (testing n=160) multi-parametric prostate MRI exams
collected at UCSF from 2015-2018 followed by MRI/ultrasound fusion (targeted)
biopsy and systematic (nontargeted) biopsy of the prostate gland, demonstrating
that deep networks trained with mixed supervision of histopathology can
significantly exceed the performance of the Prostate Imaging-Reporting and Data
System (PI-RADS) clinical standard for prostate MRI interpretation.
- Abstract(参考訳): mriからの非侵襲性前立腺癌検出は、臨床に重要な疾患(isupグレード群>=2)を早期に検出することで患者のケアに革命をもたらす可能性がある。
そこで本研究では,良性病理からisupグレードグループ~5までの生検結果が得られた患者集団に適用可能な臨床的に有意な前立腺癌を予測するためのmriを用いた深層学習法を提案する。
具体的には,画像ベースセグメンテーションとの整合性の低下にもかかわらず,多種多様な組織学的基盤真理による混在監視が分類性能の向上を実証する。
すなわち, 臨床上有意義ながんの局在を強く監視するために, 対象とする生検および全摘前立腺切除から得られた基礎的真理として, 病理学的結果を利用した場合, 非標的型系統性生検から抽出された弱い監督信号を用いて, 総合的性能を向上させる。
私たちの重要な革新は、単に価値によってではなく、分散による回帰を行うことであり、ディープラーニング戦略によって伝統的に無視される追加の病理所見の使用を可能にします。
我々は,2015-2018年にUCSFで収集された973(n=160)個の多パラメータ前立腺MRI試験とMRI/ultrasound fusion (targeted) biopsy and systematic (nontargeted) biopsy of prostate glandで評価し,病理組織学的に混在した深層ネットワークが,前立腺MRI解釈のためのPI-RADS(Prostate Imaging-Reporting and Data System)臨床標準の性能を大幅に上回ることを示した。
関連論文リスト
- Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - Radiomics Boosts Deep Learning Model for IPMN Classification [3.4659499358648675]
膵管内乳頭粘液性腫瘍 (IPMN) の嚢胞は術前膵管病変であり,膵癌に進展する可能性がある。
本研究では,MRIスキャンからIPMNリスク分類のための新しいコンピュータ支援診断パイプラインを提案する。
論文 参考訳(メタデータ) (2023-09-11T22:41:52Z) - Beyond attention: deriving biologically interpretable insights from
weakly-supervised multiple-instance learning models [2.639541396835675]
本稿では,高精細エンコーダによるタイルレベルのアテンションと予測スコアを組み合わせたPAWマップを提案する。
また, PAWマップと核分割マスクを統合することにより, 生物学的特徴のインスタンス化手法も導入する。
本手法により, 予後不良の予知を行う領域は, 腫瘍部位と同一位置にあることが判明した。
論文 参考訳(メタデータ) (2023-09-07T09:44:35Z) - Development of a Deep Learning System for Intra-Operative Identification
of Cancer Metastases [3.8137985834223507]
我々は,人工知能(AI)システムが腹膜表面転移の認識を改善できるかどうかを評価する。
原型深層学習手術指導システムは腹膜表面転移の同定において腫瘍外科医より優れていた。
論文 参考訳(メタデータ) (2023-06-17T15:41:11Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
NHSは低リスクの全ての患者に会うのが難しくなっているが、これはOA患者に限らない。
膝関節疾患の診断と治療経過のモニタリングのためのバイオマーカー自動同定法を提案する。
論文 参考訳(メタデータ) (2023-04-26T16:47:42Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
化学療法に対する腫瘍反応を予測するためのハイブリッドディープニューラルネットワークパイプラインを提案する。
セグメンテーションから分類への表現伝達の組み合わせと、ローカライゼーションと表現学習を利用する。
提案手法は, 合計477個のデータセットを用いて, ROC-AUC 63.7% の処理応答を予測できる, 極めて効率的な手法である。
論文 参考訳(メタデータ) (2022-11-08T11:50:31Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
病理学者は、ガラススライド上の針生検の組織を調べて前立腺がんを診断し、診断する。
がんの重症度と転移リスクは、前立腺の組織と形態に基づくスコアであるGleason gradeによって決定される。
本稿では,病理学者のtextitmodus operandi に従って,個々の腺のマルチスケールパッチを分離・分類する自動ワークフローを提案する。
論文 参考訳(メタデータ) (2022-09-27T14:08:19Z) - Strategising template-guided needle placement for MR-targeted prostate
biopsy [4.098030060686299]
2次元超音波像と生検針の連続的位置決めの動作を最適化する強化学習方針を学習する。
実験の結果, 提案したRL学習ポリシーは平均ヒット率93%, がんコア長11mmであった。
論文 参考訳(メタデータ) (2022-07-21T23:27:07Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Divide-and-Rule: Self-Supervised Learning for Survival Analysis in
Colorectal Cancer [9.431791041887957]
本稿では,組織領域の表現とクラスタリングのメトリクスを学習し,その基盤となるパターンを学習する自己教師型学習手法を提案する。
提案手法は, 患者結果予測の過度な適合を避けるために, 線形予測器の恩恵を受けることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T09:15:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。