論文の概要: Strategising template-guided needle placement for MR-targeted prostate
biopsy
- arxiv url: http://arxiv.org/abs/2207.10784v1
- Date: Thu, 21 Jul 2022 23:27:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-25 12:51:21.373468
- Title: Strategising template-guided needle placement for MR-targeted prostate
biopsy
- Title(参考訳): 前立腺生検におけるテンプレートガイド下針配置法
- Authors: Iani JMB Gayo, Shaheer U. Saeed, Dean C. Barratt, Matthew J. Clarkson,
Yipeng Hu
- Abstract要約: 2次元超音波像と生検針の連続的位置決めの動作を最適化する強化学習方針を学習する。
実験の結果, 提案したRL学習ポリシーは平均ヒット率93%, がんコア長11mmであった。
- 参考スコア(独自算出の注目度): 4.098030060686299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinically significant prostate cancer has a better chance to be sampled
during ultrasound-guided biopsy procedures, if suspected lesions found in
pre-operative magnetic resonance (MR) images are used as targets. However, the
diagnostic accuracy of the biopsy procedure is limited by the
operator-dependent skills and experience in sampling the targets, a sequential
decision making process that involves navigating an ultrasound probe and
placing a series of sampling needles for potentially multiple targets. This
work aims to learn a reinforcement learning (RL) policy that optimises the
actions of continuous positioning of 2D ultrasound views and biopsy needles
with respect to a guiding template, such that the MR targets can be sampled
efficiently and sufficiently. We first formulate the task as a Markov decision
process (MDP) and construct an environment that allows the targeting actions to
be performed virtually for individual patients, based on their anatomy and
lesions derived from MR images. A patient-specific policy can thus be
optimised, before each biopsy procedure, by rewarding positive sampling in the
MDP environment. Experiment results from fifty four prostate cancer patients
show that the proposed RL-learned policies obtained a mean hit rate of 93% and
an average cancer core length of 11 mm, which compared favourably to two
alternative baseline strategies designed by humans, without hand-engineered
rewards that directly maximise these clinically relevant metrics. Perhaps more
interestingly, it is found that the RL agents learned strategies that were
adaptive to the lesion size, where spread of the needles was prioritised for
smaller lesions. Such a strategy has not been previously reported or commonly
adopted in clinical practice, but led to an overall superior targeting
performance when compared with intuitively designed strategies.
- Abstract(参考訳): 臨床的に有意な前立腺癌は、術前mri画像で発見された疑わしい病変が標的として使用される場合、超音波誘導生検で検体される可能性がより高い。
しかし, バイオプシーの診断精度は, 超音波プローブをナビゲートし, 複数のターゲットに対して一連のサンプリング針を配置する逐次的意思決定プロセスである, 対象をサンプリングする操作者に依存した技術と経験によって制限される。
本研究の目的は,2次元超音波像と生検針の連続的な位置決め動作をガイドテンプレートに対して最適化し,MRターゲットを効率的に十分にサンプリングできる強化学習(RL)政策を学習することである。
まず,この課題をマルコフ決定プロセス (MDP) として定式化し,MR画像から得られた解剖や病変に基づいて,患者個人に対して効果的に標的行動を行う環境を構築する。
したがって、MDP環境における正のサンプリングに報いることにより、各生検前に患者固有のポリシーを最適化することができる。
前立腺がん患者50人の実験結果から、提案したRL学習ポリシーは平均ヒット率93%、平均がんコア長11mmであり、ヒトが設計した2つの代替ベースライン戦略に好適に比較でき、これらの臨床関連指標を直接最大化する手技的な報酬は得られなかった。
さらに興味深いのは、RL剤が病変の大きさに適応する戦略を学習し、針の拡散がより小さな病変に優先されることである。
このような戦略は、これまで報告されてはいないが、直感的に設計された戦略と比較して総合的に優れたターゲティングパフォーマンスをもたらす。
関連論文リスト
- Enhanced Cascade Prostate Cancer Classifier in mp-MRI Utilizing Recall Feedback Adaptive Loss and Prior Knowledge-Based Feature Extraction [4.00189087655119]
本稿では, 先行知識を取り入れ, 不均一な医用サンプル分布の問題に対処し, mpMRIにおける高い解釈可能性を維持するソリューションを提案する。
まず,前立腺癌に対するPI-RADS基準をモデルトレーニングの診断情報として数学的にモデル化する,事前知識に基づく特徴抽出手法を提案する。
次に、極めて不均衡なデータ問題に対処するため、適応的リコールフィードバック損失を提案する。
第3に、前立腺癌を解釈可能な方法で異なるレベルに分類する拡張前立腺癌を設計する。
論文 参考訳(メタデータ) (2024-08-19T07:18:06Z) - Towards Multi-modality Fusion and Prototype-based Feature Refinement for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound [4.662744612095781]
臨床的に有意な前立腺癌(csPCa)分類のための多モードTRUSを用いた新しい学習フレームワークを提案する。
提案フレームワークは,Bモードとせん断波エラストグラフィ(SWE)から特徴を抽出するために,2つの別々の3D ResNet-50を用いている。
このフレームワークの性能は512のTRUSビデオと生検で得られた前立腺癌からなる大規模データセットで評価される。
論文 参考訳(メタデータ) (2024-06-20T07:45:01Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
本研究では, 高精度ながん検出を実現するための新しいテキスト誘導学習法を提案する。
本手法は,大規模プレトレーニングVLMによる臨床知識の活用により,一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2024-05-23T07:03:38Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
NHSは低リスクの全ての患者に会うのが難しくなっているが、これはOA患者に限らない。
膝関節疾患の診断と治療経過のモニタリングのためのバイオマーカー自動同定法を提案する。
論文 参考訳(メタデータ) (2023-04-26T16:47:42Z) - Mixed Supervision of Histopathology Improves Prostate Cancer
Classification from MRI [0.9395521049323435]
MRIによる非侵襲的前立腺癌検出は、患者のケアに革命をもたらす可能性がある。
患者集団に適用可能な臨床上重要な前立腺癌を予測するためのMRIによる深達度学習法を提案する。
論文 参考訳(メタデータ) (2022-12-13T02:34:57Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
病理学者は、ガラススライド上の針生検の組織を調べて前立腺がんを診断し、診断する。
がんの重症度と転移リスクは、前立腺の組織と形態に基づくスコアであるGleason gradeによって決定される。
本稿では,病理学者のtextitmodus operandi に従って,個々の腺のマルチスケールパッチを分離・分類する自動ワークフローを提案する。
論文 参考訳(メタデータ) (2022-09-27T14:08:19Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - Primary Tumor and Inter-Organ Augmentations for Supervised Lymph Node
Colon Adenocarcinoma Metastasis Detection [8.69535649683089]
ラベル付きデータの不足は、病理組織学応用のためのディープラーニングベースのモデルを開発する上で、大きなボトルネックとなる。
本研究は,対象領域の限定的あるいは全く表現されていない場合の大腸癌転移検出のためのトレーニングデータの拡張方法について検討する。
論文 参考訳(メタデータ) (2021-09-17T17:31:25Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
ダイナミックコントラストCT(Dynamic contrast Computed Tomography)のための完全自動多段階肝腫瘍評価フレームワークを提案する。
本システムでは, 腫瘍提案検出, 腫瘍採取, 原発部位の選択, 深部テクスチャに基づく腫瘍評価の4段階からなる。
論文 参考訳(メタデータ) (2020-06-28T19:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。