Continuous-variable quantum approximate optimization on a programmable
photonic quantum processor
- URL: http://arxiv.org/abs/2206.07214v2
- Date: Thu, 5 Oct 2023 04:36:18 GMT
- Title: Continuous-variable quantum approximate optimization on a programmable
photonic quantum processor
- Authors: Yutaro Enomoto, Keitaro Anai, Kenta Udagawa, Shuntaro Takeda
- Abstract summary: Variational quantum algorithms (VQAs) provide a promising approach to achieving quantum advantage for practical problems on noisy quantum devices.
We develop an automated collaborative computing system between a programmable photonic quantum computer and a classical computer.
Our work can be extended to the minimization of more general functions, providing an alternative to achieve the quantum advantage in practical problems.
- Score: 0.9558392439655016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms (VQAs) provide a promising approach to
achieving quantum advantage for practical problems on near-term noisy
intermediate-scale quantum (NISQ) devices. Thus far, most studies on VQAs have
focused on qubit-based systems, but the power of VQAs can be potentially
boosted by exploiting infinite-dimensional continuous-variable (CV) systems.
Here, we implement the CV version of one VQA, a quantum approximate
optimization algorithm by developing an automated collaborative computing
system between a programmable photonic quantum computer and a classical
computer. We experimentally demonstrate that this algorithm solves the
minimization problem of simple continuous functions by implementing the quantum
version of gradient descent to localize an initially broadly-distributed
wavefunction to the minimum. This method allows the execution of a practical CV
quantum algorithm on a physical platform. Our work can be extended to the
minimization of more general functions, providing an alternative to achieve the
quantum advantage in practical problems.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Variational Quantum Eigensolvers with Quantum Gaussian Filters for solving ground-state problems in quantum many-body systems [2.5425769156210896]
We present a novel quantum algorithm for approximating the ground-state in quantum many-body systems.
Our approach integrates Variational Quantum Eigensolvers (VQE) with Quantum Gaussian Filters (QGF)
Our method shows improved convergence speed and accuracy, particularly under noisy conditions.
arXiv Detail & Related papers (2024-01-24T14:01:52Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Policy Gradient Algorithm with Optimized Action Decoding [1.3946033794136758]
We introduce a novel quality measure that enables us to optimize the classical post-processing required for action selection.
With this technique, we successfully execute a full training routine on a 5-qubit hardware device.
arXiv Detail & Related papers (2022-12-13T15:42:10Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
A leading paradigm to establish such near-term quantum applications is variational quantum algorithms (VQAs)
We prove that for a broad class of such random circuits, the variation range of the cost function vanishes exponentially in the number of qubits with a high probability.
This result can unify the restrictions on gradient-based and gradient-free optimizations in a natural manner and reveal extra harsh constraints on the training landscapes of VQAs.
arXiv Detail & Related papers (2022-05-10T17:14:57Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - The Variational Quantum Eigensolver: a review of methods and best
practices [3.628860803653535]
The variational quantum eigensolver (or VQE) uses the variational principle to compute the ground state energy of a Hamiltonian.
This review aims to provide an overview of the progress that has been made on the different parts of the algorithm.
arXiv Detail & Related papers (2021-11-09T14:40:18Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.