FairRoad: Achieving Fairness for Recommender Systems with Optimized
Antidote Data
- URL: http://arxiv.org/abs/2212.06750v1
- Date: Tue, 13 Dec 2022 17:32:44 GMT
- Title: FairRoad: Achieving Fairness for Recommender Systems with Optimized
Antidote Data
- Authors: Minghong Fang, Jia Liu, Michinari Momma, Yi Sun
- Abstract summary: We propose a new approach called fair recommendation with optimized antidote data (FairRoad)
Our proposed antidote data generation algorithm significantly improve the fairness of recommender systems with a small amounts of antidote data.
- Score: 15.555228739298045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Today, recommender systems have played an increasingly important role in
shaping our experiences of digital environments and social interactions.
However, as recommender systems become ubiquitous in our society, recent years
have also witnessed significant fairness concerns for recommender systems.
Specifically, studies have shown that recommender systems may inherit or even
amplify biases from historical data, and as a result, provide unfair
recommendations. To address fairness risks in recommender systems, most of the
previous approaches to date are focused on modifying either the existing
training data samples or the deployed recommender algorithms, but unfortunately
with limited degrees of success. In this paper, we propose a new approach
called fair recommendation with optimized antidote data (FairRoad), which aims
to improve the fairness performances of recommender systems through the
construction of a small and carefully crafted antidote dataset. Toward this
end, we formulate our antidote data generation task as a mathematical
optimization problem, which minimizes the unfairness of the targeted
recommender systems while not disrupting the deployed recommendation
algorithms. Extensive experiments show that our proposed antidote data
generation algorithm significantly improve the fairness of recommender systems
with a small amounts of antidote data.
Related papers
- Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization [1.7771454131646311]
A small set of popular items dominate the recommendation results due to their high interaction rates.
This phenomenon disproportionately benefits users with mainstream tastes while neglecting those with niche interests.
We propose an in-processing approach to address this issue by intervening in the training process of recommendation models.
arXiv Detail & Related papers (2024-10-07T08:34:18Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
We present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems.
Next, we delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications.
arXiv Detail & Related papers (2023-06-01T07:08:22Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
Collaborative filtering based recommendation learns users' preferences from all users' historical behavior data, and has been popular to facilitate decision making.
A recommender system is considered unfair when it does not perform equally well for different user groups according to users' sensitive attributes.
In this paper, we study how to improve recommendation fairness from the data augmentation perspective.
arXiv Detail & Related papers (2023-02-13T13:11:46Z) - CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems [5.145741425164946]
We present an optimization-based re-ranking approach that seamlessly integrates fairness constraints from both the consumer and producer-side.
We demonstrate through large-scale experiments on 8 datasets that our proposed method is capable of improving both consumer and producer fairness without reducing overall recommendation quality.
arXiv Detail & Related papers (2022-04-17T20:38:02Z) - Membership Inference Attacks Against Recommender Systems [33.66394989281801]
We make the first attempt on quantifying the privacy leakage of recommender systems through the lens of membership inference.
Our attack is on the user-level but not on the data sample-level.
A shadow recommender is established to derive the labeled training data for training the attack model.
arXiv Detail & Related papers (2021-09-16T15:19:19Z) - Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect [89.91745908462417]
We show the benefits of pre-training to recommender systems through experiments.
We discuss several promising directions for future research for recommender systems with pre-training.
arXiv Detail & Related papers (2020-09-19T13:06:27Z) - DeepFair: Deep Learning for Improving Fairness in Recommender Systems [63.732639864601914]
The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations.
We propose a Deep Learning based Collaborative Filtering algorithm that provides recommendations with an optimum balance between fairness and accuracy without knowing demographic information about the users.
arXiv Detail & Related papers (2020-06-09T13:39:38Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.