Predicting Ejection Fraction from Chest X-rays Using Computer Vision for
Diagnosing Heart Failure
- URL: http://arxiv.org/abs/2212.09860v1
- Date: Mon, 19 Dec 2022 21:18:27 GMT
- Title: Predicting Ejection Fraction from Chest X-rays Using Computer Vision for
Diagnosing Heart Failure
- Authors: Walt Williams, Rohan Doshi, Yanran Li, Kexuan Liang
- Abstract summary: Ejection fraction (EF) is a key metric for the diagnosis and management of heart failure.
While chest x-rays (CXR) are quick, inexpensive, and require less expertise, they do not provide sufficient information to the human eye to estimate EF.
This work explores the efficacy of computer vision techniques to predict reduced EF solely from CXRs.
- Score: 8.955986135184375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heart failure remains a major public health challenge with growing costs.
Ejection fraction (EF) is a key metric for the diagnosis and management of
heart failure however estimation of EF using echocardiography remains expensive
for the healthcare system and subject to intra/inter operator variability.
While chest x-rays (CXR) are quick, inexpensive, and require less expertise,
they do not provide sufficient information to the human eye to estimate EF.
This work explores the efficacy of computer vision techniques to predict
reduced EF solely from CXRs. We studied a dataset of 3488 CXRs from the MIMIC
CXR-jpg (MCR) dataset. Our work establishes benchmarks using multiple
state-of-the-art convolutional neural network architectures. The subsequent
analysis shows increasing model sizes from 8M to 23M parameters improved
classification performance without overfitting the dataset. We further show how
data augmentation techniques such as CXR rotation and random cropping further
improves model performance another ~5%. Finally, we conduct an error analysis
using saliency maps and Grad-CAMs to better understand the failure modes of
convolutional models on this task.
Related papers
- Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
COVID-19 diagnosis can now be done efficiently using PCR tests, but this use case exemplifies the need for a methodology to overcome data variability issues.
We propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans.
arXiv Detail & Related papers (2022-08-19T15:49:47Z) - Domain Knowledge Driven 3D Dose Prediction Using Moment-Based Loss
Function [3.2653790770825686]
Dose volume histogram (DVH) metrics are widely accepted evaluation criteria in the clinic.
We propose a novel moment-based loss function for predicting 3D dose distribution.
arXiv Detail & Related papers (2022-07-07T16:35:06Z) - Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case
Study on COVID-19 Chest X-ray Image [3.135883872525168]
Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff.
Deep learning has been applied to perform COVID-19 infection region segmentation and disease classification.
We propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration.
arXiv Detail & Related papers (2022-05-27T20:06:45Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - SCALP -- Supervised Contrastive Learning for Cardiopulmonary Disease
Classification and Localization in Chest X-rays using Patient Metadata [10.269187107011934]
We introduce an end-to-end framework, SCALP, which extends the self-supervised contrastive approach to a supervised setting.
SCALP pulls together chest X-rays from the same patient (positive keys) and pushes apart chest X-rays from different patients (negative keys)
Our experiments demonstrate that SCALP outperforms existing baselines with significant margins in both classification and localization tasks.
arXiv Detail & Related papers (2021-10-27T21:38:12Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies
on Medical Image Classification [63.44396343014749]
We propose a new margin-based surrogate loss function for the AUC score.
It is more robust than the commonly used.
square loss while enjoying the same advantage in terms of large-scale optimization.
To the best of our knowledge, this is the first work that makes DAM succeed on large-scale medical image datasets.
arXiv Detail & Related papers (2020-12-06T03:41:51Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare.
We propose an innovative automated segmentation pipeline for COVID-19 infected regions.
Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods.
arXiv Detail & Related papers (2020-06-24T17:29:26Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.