論文の概要: A Generalized Variable Importance Metric and Estimator for Black Box
Machine Learning Models
- arxiv url: http://arxiv.org/abs/2212.09931v1
- Date: Tue, 20 Dec 2022 00:50:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 16:59:38.415266
- Title: A Generalized Variable Importance Metric and Estimator for Black Box
Machine Learning Models
- Title(参考訳): ブラックボックス機械学習モデルのための一般化可変重要度指標と推定器
- Authors: Mohammad Kaviul Anam Khan and Rafal Kustra
- Abstract要約: 本研究の目的は,ブラックボックス機械学習手法における予測器の重要性を定義することである。
定義されたGVIMは、条件平均処理効果(CATE)の関数として、多項および連続予測器の2乗として表すことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of this study is to define importance of predictors for black box
machine learning methods, where the prediction function can be highly
non-additive and cannot be represented by statistical parameters. In this paper
we defined a ``Generalized Variable Importance Metric (GVIM)'' using the true
conditional expectation function for a continuous or a binary response
variable. We further showed that the defined GVIM can be represented as a
function of the Conditional Average Treatment Effect (CATE) squared for
multinomial and continuous predictors. Then we propose how the metric can be
estimated using using any machine learning models. Finally we showed the
properties of the estimator using multiple simulations.
- Abstract(参考訳): 本研究の目的は,予測関数が非付加的であり,統計的パラメータで表現できないブラックボックス機械学習手法における予測器の重要性を定義することである。
本稿では,連続変数やバイナリ応答変数に対する条件付き期待関数を用いて,「一般化変数重要度指標(GVIM)」を定義した。
さらに,定義したGVIMは条件平均処理効果 (CATE) の関数として,多項および連続予測器の2乗として表せることを示した。
次に,任意の機械学習モデルを用いてメトリクスを推定する方法を提案する。
最後に,複数のシミュレーションを用いて推定器の特性を示した。
関連論文リスト
- Measuring Variable Importance in Individual Treatment Effect Estimation with High Dimensional Data [35.104681814241104]
因果機械学習(ML)は、個々の治療効果を推定するための強力なツールを提供する。
ML手法は、医療応用にとって重要な解釈可能性の重要な課題に直面している。
統計的に厳密な変数重要度評価のための条件置換重要度(CPI)法に基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-23T11:44:07Z) - Overparameterized Multiple Linear Regression as Hyper-Curve Fitting [0.0]
線形モデルは, モデル仮定に反する非線形依存が存在する場合でも, 正確な予測を生成することが証明された。
ハイパーカーブのアプローチは、予測変数のノイズに関する問題を正規化するのに特に適しており、モデルからノイズや「不適切な」予測子を取り除くのに使うことができる。
論文 参考訳(メタデータ) (2024-04-11T15:43:11Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
本稿では,分布外ケースに対する頑健な一般化性を有する動き予測のための解釈可能な生成モデルを提案する。
このモデルでは, 長期目的地の空間分布を推定することにより, 目標駆動動作予測を実現する。
動き予測データセットの実験は、適合したモデルが解釈可能で一般化可能であることを検証した。
論文 参考訳(メタデータ) (2024-03-10T04:16:04Z) - Partially factorized variational inference for high-dimensional mixed
models [0.0]
変分推論(VI)法はそのような計算を行う一般的な方法である。
標準VI(平均場)は、高次元における後方の不確かさを劇的に過小評価していることを示す。
次に、平均場仮定を適切に緩和すると、不確かさの定量化が高次元で悪化しないVI法が得られることを示す。
論文 参考訳(メタデータ) (2023-12-20T16:12:37Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
モデルの勾配は、半環を用いたより一般的な定式化の特別な場合であることを示す。
この観測により、バックプロパゲーションアルゴリズムを一般化し、他の解釈可能な統計を効率的に計算することができる。
論文 参考訳(メタデータ) (2023-07-06T15:19:53Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - ER: Equivariance Regularizer for Knowledge Graph Completion [107.51609402963072]
我々は、新しい正規化器、すなわち等分散正規化器(ER)を提案する。
ERは、頭と尾のエンティティ間の意味的等価性を利用することで、モデルの一般化能力を高めることができる。
実験結果から,最先端関係予測法よりも明確かつ実質的な改善が示された。
論文 参考訳(メタデータ) (2022-06-24T08:18:05Z) - Functional Mixtures-of-Experts [0.24578723416255746]
観測対象が関数を含む状況下での予測のための異種データの統計的解析について検討する。
まず,機能的ME(FME)と呼ばれる新しいMEモデルのファミリーを提示する。
我々は,モデルに適合する最大パラメータ推定戦略を定式化したLasso-like (EM-Lasso) の専用予測-最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-02-04T17:32:28Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z) - Identifiable Energy-based Representations: An Application to Estimating
Heterogeneous Causal Effects [83.66276516095665]
条件付き平均治療効果(CATEs)は、多数の個体にまたがる不均一性について理解することができる。
典型的なCATE学習者は、CATEが識別可能であるために、すべての共起変数が測定されていると仮定する。
本稿では,ノイズコントラッシブ損失関数を用いて,変数の低次元表現を学習するエネルギーベースモデルを提案する。
論文 参考訳(メタデータ) (2021-08-06T10:39:49Z) - Gaussian Process Regression with Local Explanation [28.90948136731314]
本稿では,各サンプルの予測に寄与する特徴を明らかにするため,局所的な説明を伴うGPRを提案する。
提案モデルでは,各サンプルの予測と説明を,容易に解釈可能な局所線形モデルを用いて行う。
新しい試験サンプルでは, 対象変数と重みベクトルの値と不確かさを予測できる。
論文 参考訳(メタデータ) (2020-07-03T13:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。