Validating argument-based opinion dynamics with survey experiments
- URL: http://arxiv.org/abs/2212.10143v2
- Date: Fri, 21 Jul 2023 13:43:36 GMT
- Title: Validating argument-based opinion dynamics with survey experiments
- Authors: Sven Banisch and Hawal Shamon
- Abstract summary: The empirical validation of models remains one of the most important challenges in opinion dynamics.
We show that the extended argument-based model provides a solid bridge from the micro processes of argument-induced attitude change to macro level opinion distributions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The empirical validation of models remains one of the most important
challenges in opinion dynamics. In this contribution, we report on recent
developments on combining data from survey experiments with computational
models of opinion formation. We extend previous work on the empirical
assessment of an argument-based model for opinion dynamics in which biased
processing is the principle mechanism. While previous work (Banisch & Shamon,
in press) has focused on calibrating the micro mechanism with experimental data
on argument-induced opinion change, this paper concentrates on the macro level
using the empirical data gathered in the survey experiment. For this purpose,
the argument model is extended by an external source of balanced information
which allows to control for the impact of peer influence processes relative to
other noisy processes. We show that surveyed opinion distributions are matched
with a high level of accuracy in a specific region in the parameter space,
indicating an equal impact of social influence and external noise. More
importantly, the estimated strength of biased processing given the macro data
is compatible with those values that achieve high likelihood at the micro
level. The main contribution of the paper is hence to show that the extended
argument-based model provides a solid bridge from the micro processes of
argument-induced attitude change to macro level opinion distributions. Beyond
that, we review the development of argument-based models and present a new
method for the automated classification of model outcomes.
Related papers
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Sequential Representation Learning via Static-Dynamic Conditional Disentanglement [58.19137637859017]
This paper explores self-supervised disentangled representation learning within sequential data, focusing on separating time-independent and time-varying factors in videos.
We propose a new model that breaks the usual independence assumption between those factors by explicitly accounting for the causal relationship between the static/dynamic variables.
Experiments show that the proposed approach outperforms previous complex state-of-the-art techniques in scenarios where the dynamics of a scene are influenced by its content.
arXiv Detail & Related papers (2024-08-10T17:04:39Z) - An Experimental Study on the Rashomon Effect of Balancing Methods in Imbalanced Classification [0.0]
This paper examines the impact of balancing methods on predictive multiplicity using the Rashomon effect.
It is crucial because the blind model selection in data-centric AI is risky from a set of approximately equally accurate models.
arXiv Detail & Related papers (2024-03-22T13:08:22Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Biased processing and opinion polarization: experimental refinement of
argument communication theory in the context of the energy debate [0.0]
We combine experimental research on biased argument processing with a computational theory of group deliberation.
The experiment reveals a strong tendency to consider arguments aligned with the current attitude more persuasive and to downgrade those speaking against it.
We derive a mathematical model that allows to relate the strength of biased processing to expected attitude changes.
arXiv Detail & Related papers (2022-12-20T09:35:53Z) - The drivers of online polarization: fitting models to data [0.0]
echo chamber effect and opinion polarization may be driven by several factors including human biases in information consumption and personalized recommendations produced by feed algorithms.
Until now, studies have mainly used opinion dynamic models to explore the mechanisms behind the emergence of polarization and echo chambers.
We provide a method to numerically compare the opinion distributions obtained from simulations with those measured on social media.
arXiv Detail & Related papers (2022-05-31T17:00:41Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
We show that variational Bayesian methods can yield sensitivities with respect to parametric and nonparametric aspects of Bayesian models.
We provide both theoretical and empirical support for our variational approach to Bayesian sensitivity analysis.
arXiv Detail & Related papers (2021-07-08T03:40:18Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Learning Opinion Dynamics From Social Traces [25.161493874783584]
We propose an inference mechanism for fitting a generative, agent-like model of opinion dynamics to real-world social traces.
We showcase our proposal by translating a classical agent-based model of opinion dynamics into its generative counterpart.
We apply our model to real-world data from Reddit to explore the long-standing question about the impact of backfire effect.
arXiv Detail & Related papers (2020-06-02T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.