Synergetic quantum error mitigation by randomized compiling and
zero-noise extrapolation for the variational quantum eigensolver
- URL: http://arxiv.org/abs/2212.11198v3
- Date: Mon, 13 Nov 2023 18:40:40 GMT
- Title: Synergetic quantum error mitigation by randomized compiling and
zero-noise extrapolation for the variational quantum eigensolver
- Authors: Tomochika Kurita, Hammam Qassim, Masatoshi Ishii, Hirotaka Oshima,
Shintaro Sato, Joseph Emerson
- Abstract summary: We propose a quantum error mitigation strategy for the variational quantum eigensolver (VQE) algorithm.
We find, via numerical simulation, that very small amounts of coherent noise in VQE can cause substantially large errors.
The proposed strategy is a combination of previously reported techniques, namely randomized compiling (RC) and zero-noise extrapolation (ZNE)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a quantum error mitigation strategy for the variational quantum
eigensolver (VQE) algorithm. We find, via numerical simulation, that very small
amounts of coherent noise in VQE can cause substantially large errors that are
difficult to suppress by conventional mitigation methods, and yet our proposed
mitigation strategy is able to significantly reduce these errors. The proposed
strategy is a combination of previously reported techniques, namely randomized
compiling (RC) and zero-noise extrapolation (ZNE). Intuitively, randomized
compiling turns coherent errors in the circuit into stochastic Pauli errors,
which facilitates extrapolation to the zero-noise limit when evaluating the
cost function. Our numerical simulation of VQE for small molecules shows that
the proposed strategy can mitigate energy errors induced by various types of
coherent noise by up to two orders of magnitude.
Related papers
- Mitigating Quantum Gate Errors for Variational Eigensolvers Using Hardware-Inspired Zero-Noise Extrapolation [0.0]
We develop a recipe for mitigating quantum gate errors for variational algorithms using zero-noise extrapolation.
We utilize the fact that gate errors in a physical quantum device are distributed inhomogeneously over different qubits and qubit pairs.
We find that the estimated energy in the variational approach is approximately linear with respect to the circuit error sum.
arXiv Detail & Related papers (2023-07-20T18:00:03Z) - Classical simulations of noisy variational quantum circuits [0.0]
Noisely affects quantum computations so that they not only become less accurate but also easier to simulate classically as systems scale up.
We construct a classical simulation algorithm, LOWESA, for estimating expectation values of noisy parameterised quantum circuits.
arXiv Detail & Related papers (2023-06-08T17:52:30Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Compressed quantum error mitigation [0.0]
We introduce a quantum error mitigation technique based on probabilistic error cancellation to eliminate errors which have accumulated during the application of a quantum circuit.
For a simple noise model, we show that efficient, local denoisers can be found, and we demonstrate their effectiveness for the digital quantum simulation of the time evolution of simple spin chains.
arXiv Detail & Related papers (2023-02-10T19:00:02Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - The Accuracy vs. Sampling Overhead Trade-off in Quantum Error Mitigation
Using Monte Carlo-Based Channel Inversion [84.66087478797475]
Quantum error mitigation (QEM) is a class of promising techniques for reducing the computational error of variational quantum algorithms.
We consider a practical channel inversion strategy based on Monte Carlo sampling, which introduces additional computational error.
We show that when the computational error is small compared to the dynamic range of the error-free results, it scales with the square root of the number of gates.
arXiv Detail & Related papers (2022-01-20T00:05:01Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Fundamental limits of quantum error mitigation [0.0]
We show how error-mitigation algorithms can reduce the computation error as a function of their sampling overhead.
Our results provide a means to identify when a given quantum error-mitigation strategy is optimal and when there is potential room for improvement.
arXiv Detail & Related papers (2021-09-09T17:56:14Z) - Quasiprobability decompositions with reduced sampling overhead [4.38301148531795]
Quantum error mitigation techniques can reduce noise on current quantum hardware without the need for fault-tolerant quantum error correction.
We present a new algorithm based on mathematical optimization that aims to choose the quasiprobability decomposition in a noise-aware manner.
arXiv Detail & Related papers (2021-01-22T19:00:06Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.