Direct Analysis of Zero-Noise Extrapolation: Polynomial Methods, Error Bounds, and Simultaneous Physical-Algorithmic Error Mitigation
- URL: http://arxiv.org/abs/2502.20673v2
- Date: Wed, 19 Mar 2025 23:54:28 GMT
- Title: Direct Analysis of Zero-Noise Extrapolation: Polynomial Methods, Error Bounds, and Simultaneous Physical-Algorithmic Error Mitigation
- Authors: Pegah Mohammadipour, Xiantao Li,
- Abstract summary: Zero-noise extrapolation (ZNE) is a widely used quantum error mitigation technique that artificially amplifies circuit noise and extrapolates the results to the noise-free circuit.<n>This paper provides a comprehensive analysis of these challenges, presenting bias and variance that quantify errors.<n>We propose a strategy for simultaneously mitigating circuit and algorithmic errors by jointly scaling the time step size and the noise level.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-noise extrapolation (ZNE) is a widely used quantum error mitigation technique that artificially amplifies circuit noise and then extrapolates the results to the noise-free circuit. A common ZNE approach is Richardson extrapolation, which relies on polynomial interpolation. Despite its simplicity, efficient implementations of Richardson extrapolation face several challenges, including approximation errors from the non-polynomial behavior of noise channels, overfitting due to polynomial interpolation, and exponentially amplified measurement noise. This paper provides a comprehensive analysis of these challenges, presenting bias and variance bounds that quantify approximation errors. Additionally, for any precision $\varepsilon$, our results offer an estimate of the necessary sample complexity. We further extend the analysis to polynomial least squares-based extrapolation, which mitigates measurement noise and avoids overfitting. Finally, we propose a strategy for simultaneously mitigating circuit and algorithmic errors in the Trotter-Suzuki algorithm by jointly scaling the time step size and the noise level. This strategy provides a practical tool to enhance the reliability of near-term quantum computations. We support our theoretical findings with numerical experiments.
Related papers
- Quantitative Error Bounds for Scaling Limits of Stochastic Iterative Algorithms [10.022615790746466]
We derive non-asymptotic functional approximation error bounds between the algorithm sample paths and the Ornstein-Uhlenbeck approximation.
We use our main result to construct error bounds in terms of two common metrics: the L'evy-Prokhorov and bounded Wasserstein distances.
arXiv Detail & Related papers (2025-01-21T15:29:11Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Quantum error mitigation by layerwise Richardson extrapolation [0.6138671548064355]
We introduce emphlayerwise Richardson extrapolation (LRE), an error mitigation protocol for noisy quantum computers.<n>The noise of different individual layers (or larger chunks of the circuit) is amplified and the associated expectation values are linearly combined to estimate the zero-noise limit.<n>We provide numerical simulations demonstrating scenarios where LRE achieves superior performance compared to traditional (single-variable) Richardson extrapolation.
arXiv Detail & Related papers (2024-02-05T18:47:42Z) - Synergetic quantum error mitigation by randomized compiling and
zero-noise extrapolation for the variational quantum eigensolver [0.0]
We propose a quantum error mitigation strategy for the variational quantum eigensolver (VQE) algorithm.
We find, via numerical simulation, that very small amounts of coherent noise in VQE can cause substantially large errors.
The proposed strategy is a combination of previously reported techniques, namely randomized compiling (RC) and zero-noise extrapolation (ZNE)
arXiv Detail & Related papers (2022-12-21T17:13:47Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Quasiprobability decompositions with reduced sampling overhead [4.38301148531795]
Quantum error mitigation techniques can reduce noise on current quantum hardware without the need for fault-tolerant quantum error correction.
We present a new algorithm based on mathematical optimization that aims to choose the quasiprobability decomposition in a noise-aware manner.
arXiv Detail & Related papers (2021-01-22T19:00:06Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Multi-exponential Error Extrapolation and Combining Error Mitigation
Techniques for NISQ Applications [0.0]
Noise in quantum hardware remains the biggest roadblock for the implementation of quantum computers.
Error extrapolation is an error mitigation technique that has been successfully implemented experimentally.
We extend this to multi-exponential error extrapolation and provide more rigorous proof for its effectiveness under Pauli noise.
arXiv Detail & Related papers (2020-07-02T17:18:47Z) - Analysis and Design of Thompson Sampling for Stochastic Partial
Monitoring [91.22679787578438]
We present a novel Thompson-sampling-based algorithm for partial monitoring.
We prove that the new algorithm achieves the logarithmic problem-dependent expected pseudo-regret $mathrmO(log T)$ for a linearized variant of the problem with local observability.
arXiv Detail & Related papers (2020-06-17T05:48:33Z) - Beyond Worst-Case Analysis in Stochastic Approximation: Moment
Estimation Improves Instance Complexity [58.70807593332932]
We study oracle complexity of gradient based methods for approximation problems.
We focus on instance-dependent complexity instead of worst case complexity.
Our proposed algorithm and its analysis provide a theoretical justification for the success of moment estimation.
arXiv Detail & Related papers (2020-06-08T09:25:47Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.