論文の概要: What do LLMs Know about Financial Markets? A Case Study on Reddit Market
Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2212.11311v1
- Date: Wed, 21 Dec 2022 19:11:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 13:41:54.330029
- Title: What do LLMs Know about Financial Markets? A Case Study on Reddit Market
Sentiment Analysis
- Title(参考訳): LLMは金融市場について何を知っているのか?
Reddit Market Sentiment Analysis のケーススタディ
- Authors: Xiang Deng, Vasilisa Bashlovkina, Feng Han, Simon Baumgartner, Michael
Bendersky
- Abstract要約: ソーシャルメディアコンテンツに対する市場の感情分析には、金融市場とソーシャルメディアのジャーゴンの両方の知識が必要である。
我々のパイプラインは、大きな言語モデル(LLM)を用いたReddit投稿の弱い財務感情ラベルを生成する。
少数のプロンプトだけで、最終モデルは既存の教師付きモデルと同等に実行される。
- 参考スコア(独自算出の注目度): 15.195505464654493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Market sentiment analysis on social media content requires knowledge of both
financial markets and social media jargon, which makes it a challenging task
for human raters. The resulting lack of high-quality labeled data stands in the
way of conventional supervised learning methods. Instead, we approach this
problem using semi-supervised learning with a large language model (LLM). Our
pipeline generates weak financial sentiment labels for Reddit posts with an LLM
and then uses that data to train a small model that can be served in
production. We find that prompting the LLM to produce Chain-of-Thought
summaries and forcing it through several reasoning paths helps generate more
stable and accurate labels, while using a regression loss further improves
distillation quality. With only a handful of prompts, the final model performs
on par with existing supervised models. Though production applications of our
model are limited by ethical considerations, the model's competitive
performance points to the great potential of using LLMs for tasks that
otherwise require skill-intensive annotation.
- Abstract(参考訳): ソーシャルメディアコンテンツに対する市場の感情分析には、金融市場とソーシャルメディアのジャーゴンの両方の知識が必要である。
その結果、高品質なラベル付きデータの欠如は、従来の教師付き学習手法の仕方にある。
代わりに、大言語モデル(llm)を用いた半教師付き学習を用いてこの問題にアプローチする。
私たちのパイプラインは、llmを使ってreddit投稿の弱い金融感情ラベルを生成し、そのデータを使ってプロダクションで提供できる小さなモデルをトレーニングします。
この結果, LLM にチェイン・オブ・ソート(Chain-of-Thought)のサマリーを作成させ, いくつかの推理経路を強制することで, より安定かつ正確なラベルが生成され, 劣化損失を用いることで蒸留品質がさらに向上することが判明した。
少数のプロンプトだけで、最終モデルは既存の教師付きモデルと同等に実行される。
本モデルの実用性は倫理的考察によって制限されているが,本モデルの競争性能は,スキル集約的なアノテーションを必要とするタスクにLLMを使用することの大きな可能性を示している。
関連論文リスト
- Quantifying Qualitative Insights: Leveraging LLMs to Market Predict [0.0]
本研究は、証券会社からの日々の報告を活用して高品質な文脈情報を作成することによる課題に対処する。
レポートはテキストベースのキーファクタにセグメント化され、価格情報などの数値データと組み合わせてコンテキストセットを形成する。
工芸的なプロンプトは重要な要素にスコアを割り当て、質的な洞察を定量的な結果に変換するように設計されている。
論文 参考訳(メタデータ) (2024-11-13T07:45:40Z) - Zero-to-Strong Generalization: Eliciting Strong Capabilities of Large Language Models Iteratively without Gold Labels [75.77877889764073]
大規模言語モデル(LLM)は,ゴールドラベルを用いた教師付き微調整やテキスト内学習を通じて,顕著な性能を示した。
本研究では,ラベルのないデータのみを利用することで,強力なモデル機能を実現することができるかどうかを考察する。
ゼロ・ツー・ストロング一般化と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-09-19T02:59:44Z) - Token-Efficient Leverage Learning in Large Language Models [13.830828529873056]
大規模言語モデル(LLM)は様々なタスクで優れていますが、高リソースのシナリオではより良く機能しています。
データ不足と特定のタスクにLLMを適用することの難しさは、この課題を複雑にしている。
本稿では,Token-Efficient Leverage Learning (TELL) と呼ばれる方法論の合理化実装を提案する。
論文 参考訳(メタデータ) (2024-04-01T04:39:44Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - The ART of LLM Refinement: Ask, Refine, and Trust [85.75059530612882]
ART: Ask, Refine, and Trust と呼ばれる改良目標を用いた推論を提案する。
LLMがいつその出力を洗練すべきかを決めるために必要な質問を尋ねる。
自己補充ベースラインよりも+5ポイントの性能向上を達成する。
論文 参考訳(メタデータ) (2023-11-14T07:26:32Z) - Data-Centric Financial Large Language Models [27.464319154543173]
大規模言語モデル(LLM)は自然言語のタスクを約束するが、金融のような複雑なドメインに直接適用した場合に苦労する。
我々は、LLMが金融業務をよりうまく扱えるようにするために、データ中心のアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-07T04:53:31Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
大規模な言語モデル (LLM) は様々なNLPタスクにおいて優れた性能を示した。
本稿では,金融感情分析のためのLLMフレームワークを提案する。
提案手法の精度は15%から48%向上し,F1得点を得た。
論文 参考訳(メタデータ) (2023-10-06T05:40:23Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
視覚言語モデル(VLM)は近年,人間のような出力を生成できる視覚アシスタントとして,強力な有効性を示している。
我々は、既存の最先端のVLMを評価し、最高の性能モデルでさえ、強力な視覚的推論能力と一貫性を示すことができないことを発見した。
本稿では,VLMの推論性能と一貫性の向上を目的とした2段階トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T17:49:44Z) - Temporal Data Meets LLM -- Explainable Financial Time Series Forecasting [7.485041391778341]
我々はNASDAQ-100株に重点を置いており、公開アクセス可能な歴史的株価データ、企業のメタデータ、歴史的経済・金融ニュースを活用している。
我々は,Open-LLaMA などの公開 LLM を微調整した上で,説明可能な予測を生成するための命令を理解することができることを示す。
論文 参考訳(メタデータ) (2023-06-19T15:42:02Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。