論文の概要: Mean-field neural networks-based algorithms for McKean-Vlasov control problems *
- arxiv url: http://arxiv.org/abs/2212.11518v2
- Date: Tue, 19 Mar 2024 13:41:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 01:51:05.872422
- Title: Mean-field neural networks-based algorithms for McKean-Vlasov control problems *
- Title(参考訳): マッキーン・ブラソフ制御問題に対する平均場ニューラルネットワークに基づくアルゴリズム*
- Authors: Huyên Pham, Xavier Warin,
- Abstract要約: 本稿では,平均場ニューラルネットのクラスを用いて,McKean-Vlasov制御問題の数値解法について述べる。
ポリシーや値による制御学習による動的プログラミングや,大域的あるいは局所的損失関数による最大原理からの逆SDEなど,いくつかのアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is devoted to the numerical resolution of McKean-Vlasov control problems via the class of mean-field neural networks introduced in our companion paper [25] in order to learn the solution on the Wasserstein space. We propose several algorithms either based on dynamic programming with control learning by policy or value iteration, or backward SDE from stochastic maximum principle with global or local loss functions. Extensive numerical results on different examples are presented to illustrate the accuracy of each of our eight algorithms. We discuss and compare the pros and cons of all the tested methods.
- Abstract(参考訳): 本稿では,ワッサーシュタイン空間の解法を学習するために,我々の共用紙[25]に導入した平均場ニューラルネットワークのクラスを用いて,マッキーン・ブラソフ制御問題の数値解法について述べる。
ポリシーや値反復による制御学習を用いた動的プログラミングや,大域的あるいは局所的損失関数を用いた確率的最大原理による逆SDEを提案する。
8つのアルゴリズムの各々の精度を示すために、異なる例の大規模な数値結果を示す。
テストされたすべてのメソッドの長所と短所について議論し、比較する。
関連論文リスト
- Deep multitask neural networks for solving some stochastic optimal
control problems [0.0]
本稿では,最適制御問題のクラスについて考察し,ニューラルネットワークを用いた効果的な解法を提案する。
マルチタスクニューラルネットワークをトレーニングするために,タスク間の学習を動的にバランスさせる新しいスキームを導入する。
実世界のデリバティブ価格問題に関する数値実験を通じて,本手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-01-23T17:20:48Z) - Enhanced physics-informed neural networks with domain scaling and
residual correction methods for multi-frequency elliptic problems [11.707981310045742]
楕円型偏微分方程式の多周波解に対するニューラルネットワーク近似法を開発した。
提案手法の有効性と精度を多周波モデル問題に適用する。
論文 参考訳(メタデータ) (2023-11-07T06:08:47Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - A Block-Coordinate Approach of Multi-level Optimization with an
Application to Physics-Informed Neural Networks [0.0]
非線形最適化問題の解法として多レベルアルゴリズムを提案し,その評価複雑性を解析する。
物理インフォームドニューラルネットワーク (PINN) を用いた偏微分方程式の解に適用し, 提案手法がより良い解法と計算量を大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-05-23T19:12:02Z) - Best-Effort Adaptation [62.00856290846247]
本稿では, 試料再重み付け法に関する新しい理論的解析を行い, 試料再重み付け法を一様に保持する境界について述べる。
これらの境界が、我々が詳細に議論する学習アルゴリズムの設計を導く方法を示す。
本稿では,本アルゴリズムの有効性を実証する一連の実験結果について報告する。
論文 参考訳(メタデータ) (2023-05-10T00:09:07Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - A control method for solving high-dimensional Hamiltonian systems
through deep neural networks [0.2752817022620644]
まず、ハミルトニアン制御系がまさに解決すべき問題であるような対応する最適制御問題を導入し、その後、制御問題の異なるケースに適した2つの異なるアルゴリズムを開発し、深層ニューラルネットワークによる制御を近似する。
数値的な結果から、FBSDEを解く観点から以前に開発されたDeep FBSDE法と比較して、新しいアルゴリズムはより高速に収束する。
論文 参考訳(メタデータ) (2021-11-04T05:22:08Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
本稿では,学習ニューラルの強みと動的プログラミングアルゴリズムの強みを組み合わせた深層ポリシー動的プログラミング(d pdp)を提案する。
D PDPは、例の解からエッジを予測するために訓練されたディープニューラルネットワークから派生したポリシーを使用して、DP状態空間を優先し、制限する。
本研究では,旅行セールスマン問題 (TSP) と車両ルーティング問題 (VRP) の枠組みを評価し,ニューラルネットワークが(制限された)DPアルゴリズムの性能を向上させることを示す。
論文 参考訳(メタデータ) (2021-02-23T15:33:57Z) - Solving stochastic optimal control problem via stochastic maximum
principle with deep learning method [0.2064612766965483]
新しい制御問題を解くために3つのアルゴリズムが提案されている。
この手法の重要な応用は、完全非線形PDEの一種に対応するサブ線形期待値を計算することである。
論文 参考訳(メタデータ) (2020-07-05T02:28:43Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。