論文の概要: Enhanced physics-informed neural networks with domain scaling and
residual correction methods for multi-frequency elliptic problems
- arxiv url: http://arxiv.org/abs/2311.03746v1
- Date: Tue, 7 Nov 2023 06:08:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 16:36:24.774490
- Title: Enhanced physics-informed neural networks with domain scaling and
residual correction methods for multi-frequency elliptic problems
- Title(参考訳): 多周波楕円問題に対する領域スケーリングと残差補正法による物理インフォームニューラルネットワークの強化
- Authors: Deok-Kyu Jang, Hyea Hyun Kim, Kyungsoo Kim
- Abstract要約: 楕円型偏微分方程式の多周波解に対するニューラルネットワーク近似法を開発した。
提案手法の有効性と精度を多周波モデル問題に適用する。
- 参考スコア(独自算出の注目度): 11.707981310045742
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, neural network approximation methods are developed for
elliptic partial differential equations with multi-frequency solutions. Neural
network work approximation methods have advantages over classical approaches in
that they can be applied without much concerns on the form of the differential
equations or the shape or dimension of the problem domain. When applied to
problems with multi-frequency solutions, the performance and accuracy of neural
network approximation methods are strongly affected by the contrast of the
high- and low-frequency parts in the solutions. To address this issue, domain
scaling and residual correction methods are proposed. The efficiency and
accuracy of the proposed methods are demonstrated for multi-frequency model
problems.
- Abstract(参考訳): 本稿では,多周波解を用いた楕円偏微分方程式に対するニューラルネットワーク近似法を開発した。
ニューラルネットワークの作業近似法は、微分方程式の形式や問題領域の形状や次元に大きな関心を払わずに適用できるという古典的なアプローチよりも利点がある。
マルチ周波数解問題に適用する場合、ニューラルネットワーク近似法の性能と精度は、解の高周波数と低周波数のコントラストの影響を強く受けている。
この問題に対処するため,ドメインスケーリングと残差補正手法を提案する。
提案手法の有効性と精度を多周波モデル問題に適用する。
関連論文リスト
- Transformed Physics-Informed Neural Networks for The Convection-Diffusion Equation [0.0]
特異な摂動問題には、数値的に解くのが難しい急な境界層を持つ解が存在する。
有限差分法のような従来の数値法は、安定かつ正確な解を得るために洗練されたメッシュを必要とする。
我々は,物理インフォームドニューラルネットワーク(PINN)を用いて特異摂動問題の数値解を生成することを検討する。
論文 参考訳(メタデータ) (2024-09-12T00:24:21Z) - Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Solutions to Elliptic and Parabolic Problems via Finite Difference Based Unsupervised Small Linear Convolutional Neural Networks [1.124958340749622]
線形畳み込みニューラルネットワークを用いてPDEの有限差分解を直接推定するために、トレーニングデータを必要としない完全に教師なしのアプローチを提案する。
提案手法は、類似の有限差分に基づくアプローチよりもパラメータを著しく少なくし、また、いくつかの選択された楕円型および放物型問題に対する真の解に匹敵する精度を示す。
論文 参考訳(メタデータ) (2023-11-01T03:15:10Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - A Block-Coordinate Approach of Multi-level Optimization with an
Application to Physics-Informed Neural Networks [0.0]
非線形最適化問題の解法として多レベルアルゴリズムを提案し,その評価複雑性を解析する。
物理インフォームドニューラルネットワーク (PINN) を用いた偏微分方程式の解に適用し, 提案手法がより良い解法と計算量を大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-05-23T19:12:02Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Hierarchical Learning to Solve Partial Differential Equations Using
Physics-Informed Neural Networks [2.0305676256390934]
偏微分方程式に対するニューラルネットワーク解の収束率と精度を改善するための階層的手法を提案する。
線形偏微分方程式と非線形偏微分方程式の組によって提案した階層的手法の効率性とロバスト性を検証する。
論文 参考訳(メタデータ) (2021-12-02T13:53:42Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。