Human Activity Recognition from Wi-Fi CSI Data Using Principal
Component-Based Wavelet CNN
- URL: http://arxiv.org/abs/2212.13161v1
- Date: Mon, 26 Dec 2022 13:45:19 GMT
- Title: Human Activity Recognition from Wi-Fi CSI Data Using Principal
Component-Based Wavelet CNN
- Authors: Ishtiaque Ahmed Showmik, Tahsina Farah Sanam, Hafiz Imtiaz
- Abstract summary: Human Activity Recognition (HAR) is an emerging technology with several applications in surveillance, security, and healthcare sectors.
We propose Principal Component-based Wavelet Convolutional Neural Network (or PCWCNN) -- a novel approach that offers robustness and efficiency for practical real-time applications.
We empirically show that our proposed PCWCNN model performs very well on a real dataset, outperforming existing approaches.
- Score: 3.9533044769534444
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human Activity Recognition (HAR) is an emerging technology with several
applications in surveillance, security, and healthcare sectors. Noninvasive HAR
systems based on Wi-Fi Channel State Information (CSI) signals can be developed
leveraging the quick growth of ubiquitous Wi-Fi technologies, and the
correlation between CSI dynamics and body motions. In this paper, we propose
Principal Component-based Wavelet Convolutional Neural Network (or PCWCNN) -- a
novel approach that offers robustness and efficiency for practical real-time
applications. Our proposed method incorporates two efficient preprocessing
algorithms -- the Principal Component Analysis (PCA) and the Discrete Wavelet
Transform (DWT). We employ an adaptive activity segmentation algorithm that is
accurate and computationally light. Additionally, we used the Wavelet CNN for
classification, which is a deep convolutional network analogous to the
well-studied ResNet and DenseNet networks. We empirically show that our
proposed PCWCNN model performs very well on a real dataset, outperforming
existing approaches.
Related papers
- Improving the Real-Data Driven Network Evaluation Model for Digital Twin Networks [0.2499907423888049]
Digital Twin Networks (DTN) technology is expected to become the foundation technology for autonomous networks.
DTN has the advantage of being able to operate and system networks based on real-time collected data in a closed-loop system.
Various AI research and standardization work is ongoing to optimize the use of DTN.
arXiv Detail & Related papers (2024-05-14T09:55:03Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
We propose a novel approach for enhancing the performance of an NIDS through the integration of Generative Adversarial Networks (GANs)
GANs generate synthetic network traffic data that closely mimics real-world network behavior.
Our findings show that the integration of GANs into NIDS can lead to enhancements in intrusion detection performance for attacks with limited training data.
arXiv Detail & Related papers (2024-04-11T04:01:15Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
spiking neural networks (SNNs) have become an attractive alternative to deep neural networks for a broad range of signal processing applications.
We describe advances in algorithmic and optimization innovations to efficiently train and scale low-latency, and energy-efficient SNNs.
We discuss the potential path forward for research in building deployable SNN systems.
arXiv Detail & Related papers (2023-12-02T19:47:00Z) - Learnable Digital Twin for Efficient Wireless Network Evaluation [40.829275623191656]
Network digital twins (NDTs) facilitate the estimation of key performance indicators (KPIs) before physically implementing a network.
In this paper, we propose a learning-based NDT for network simulators.
arXiv Detail & Related papers (2023-06-11T03:43:39Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Semantic Communication Enabling Robust Edge Intelligence for
Time-Critical IoT Applications [87.05763097471487]
This paper aims to design robust Edge Intelligence using semantic communication for time-critical IoT applications.
We analyze the effect of image DCT coefficients on inference accuracy and propose the channel-agnostic effectiveness encoding for offloading.
arXiv Detail & Related papers (2022-11-24T20:13:17Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.