Offline Reinforcement Learning via Linear-Programming with Error-Bound Induced Constraints
- URL: http://arxiv.org/abs/2212.13861v3
- Date: Mon, 09 Dec 2024 20:39:58 GMT
- Title: Offline Reinforcement Learning via Linear-Programming with Error-Bound Induced Constraints
- Authors: Asuman Ozdaglar, Sarath Pattathil, Jiawei Zhang, Kaiqing Zhang,
- Abstract summary: offline reinforcement learning (RL) aims to find an optimal policy for Markov decision processes (MDPs) using a pre-collected dataset.
In this work, we revisit the linear programming (LP) reformulation of Markov decision processes for offline RL.
- Score: 26.008426384903764
- License:
- Abstract: Offline reinforcement learning (RL) aims to find an optimal policy for Markov decision processes (MDPs) using a pre-collected dataset. In this work, we revisit the linear programming (LP) reformulation of Markov decision processes for offline RL, with the goal of developing algorithms with optimal $O(1/\sqrt{n})$ sample complexity, where $n$ is the sample size, under partial data coverage and general function approximation, and with favorable computational tractability. To this end, we derive new \emph{error bounds} for both the dual and primal-dual formulations of the LP, and incorporate them properly as \emph{constraints} in the LP reformulation. We then show that under a completeness-type assumption, $O(1/\sqrt{n})$ sample complexity can be achieved under standard single-policy coverage assumption, when one properly \emph{relaxes} the occupancy validity constraint in the LP. This framework can readily handle both infinite-horizon discounted and average-reward MDPs, in both general function approximation and tabular cases. The instantiation to the tabular case achieves either state-of-the-art or the first sample complexities of offline RL in these settings. To further remove any completeness-type assumption, we then introduce a proper \emph{lower-bound constraint} in the LP, and a variant of the standard single-policy coverage assumption. Such an algorithm leads to a $O(1/\sqrt{n})$ sample complexity with dependence on the \emph{value-function gap}, with only realizability assumptions. Our properly constrained LP framework advances the existing results in several aspects, in relaxing certain assumptions and achieving the optimal $O(1/\sqrt{n})$ sample complexity, with simple analyses. We hope our results bring new insights into the use of LP formulations and the equivalent primal-dual minimax optimization for offline RL, through the error-bound induced constraints.
Related papers
- Span-Agnostic Optimal Sample Complexity and Oracle Inequalities for Average-Reward RL [6.996002801232415]
We study the sample complexity of finding an $varepsilon$-optimal policy in Markov Decision Processes (MDPs) with a generative model.
We develop the first algorithms matching the optimal span-based complexity without $H$ knowledge.
arXiv Detail & Related papers (2025-02-16T19:10:55Z) - Nearly Optimal Sample Complexity of Offline KL-Regularized Contextual Bandits under Single-Policy Concentrability [49.96531901205305]
We propose the emphfirst algorithm with $tildeO(epsilon-1)$ sample complexity under single-policy concentrability for offline contextual bandits.
Our proof leverages the strong convexity of the KL regularization, and the conditional non-negativity of the gap between the true reward and its pessimistic estimator.
We extend our algorithm to contextual dueling bandits and achieve a similar nearly optimal sample complexity.
arXiv Detail & Related papers (2025-02-09T22:14:45Z) - A Primal-Dual Algorithm for Offline Constrained Reinforcement Learning with Linear MDPs [18.449996575976993]
We propose a primal dual algorithm for offline RL with linear MDPs in the infinite-horizon discounted setting.
Our algorithm is the first computationally efficient algorithm in this setting that achieves sample complexity of $O(epsilon-2)$ with partial data coverage assumption.
We extend our algorithm to work in the offline constrained RL setting that enforces constraints on additional reward signals.
arXiv Detail & Related papers (2024-02-07T00:33:11Z) - Offline Primal-Dual Reinforcement Learning for Linear MDPs [16.782625445546273]
Offline Reinforcement Learning (RL) aims to learn a near-optimal policy from a fixed dataset of transitions collected by another policy.
This paper proposes a primal-dual optimization method based on the linear programming formulation of RL.
arXiv Detail & Related papers (2023-05-22T11:45:23Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Near-Optimal Sample Complexity Bounds for Constrained MDPs [25.509556551558834]
We provide minimax upper and lower bounds on the sample complexity for learning near-optimal policies in a discounted CMDP.
We show that learning CMDPs is as easy as MDPs when small constraint violations are allowed, but inherently more difficult when we demand zero constraint violation.
arXiv Detail & Related papers (2022-06-13T15:58:14Z) - Settling the Sample Complexity of Model-Based Offline Reinforcement
Learning [50.5790774201146]
offline reinforcement learning (RL) learns using pre-collected data without further exploration.
Prior algorithms or analyses either suffer from suboptimal sample complexities or incur high burn-in cost to reach sample optimality.
We demonstrate that the model-based (or "plug-in") approach achieves minimax-optimal sample complexity without burn-in cost.
arXiv Detail & Related papers (2022-04-11T17:26:19Z) - Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov
Decision Processes [61.11090361892306]
Reward-free reinforcement learning (RL) considers the setting where the agent does not have access to a reward function during exploration.
We show that this separation does not exist in the setting of linear MDPs.
We develop a computationally efficient algorithm for reward-free RL in a $d$-dimensional linear MDP.
arXiv Detail & Related papers (2022-01-26T22:09:59Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
We show that model-based MARL achieves a sample complexity of $tilde O(|S||B|(gamma)-3epsilon-2)$ for finding the Nash equilibrium (NE) value up to some $epsilon$ error.
We also show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge.
arXiv Detail & Related papers (2020-07-15T03:25:24Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.