論文の概要: Urban Visual Intelligence: Studying Cities with AI and Street-level
Imagery
- arxiv url: http://arxiv.org/abs/2301.00580v2
- Date: Sat, 17 Jun 2023 04:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 04:28:45.322021
- Title: Urban Visual Intelligence: Studying Cities with AI and Street-level
Imagery
- Title(参考訳): 都市視覚知能:aiと街並み画像を用いた都市研究
- Authors: Fan Zhang, Arianna Salazar Miranda, F\'abio Duarte, Lawrence Vale,
Gary Hack, Min Chen, Yu Liu, Michael Batty, Carlo Ratti
- Abstract要約: 本稿では,都市の外観と機能に関する文献を概観し,その理解に視覚情報がどのように使われているかを説明する。
概念的フレームワークであるUrban Visual Intelligenceは、新しい画像データソースとAI技術が、研究者が都市を知覚し、測定する方法をどう変えているか、詳しく説明するために導入された。
- 参考スコア(独自算出の注目度): 12.351356101876616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The visual dimension of cities has been a fundamental subject in urban
studies, since the pioneering work of scholars such as Sitte, Lynch, Arnheim,
and Jacobs. Several decades later, big data and artificial intelligence (AI)
are revolutionizing how people move, sense, and interact with cities. This
paper reviews the literature on the appearance and function of cities to
illustrate how visual information has been used to understand them. A
conceptual framework, Urban Visual Intelligence, is introduced to
systematically elaborate on how new image data sources and AI techniques are
reshaping the way researchers perceive and measure cities, enabling the study
of the physical environment and its interactions with socioeconomic
environments at various scales. The paper argues that these new approaches
enable researchers to revisit the classic urban theories and themes, and
potentially help cities create environments that are more in line with human
behaviors and aspirations in the digital age.
- Abstract(参考訳): 都市の視覚次元は、シッテ、リンチ、アーンハイム、ヤコブなどの学者の先駆的業績以来、都市研究において基本的な主題となっている。
数十年後、ビッグデータと人工知能(AI)は人々の移動、感覚、都市との相互作用に革命をもたらしている。
本稿では,都市の外観と機能に関する文献を概観し,視覚情報がどのように活用されたかを説明する。
概念的枠組みである都市視覚知能(urban visual intelligence)は、新しい画像データソースとai技術が研究者が認識し測定する方法を再形作し、物理的環境とその社会経済環境との相互作用を様々な規模で研究することを可能にするために導入されている。
論文は、これらの新しいアプローチは、研究者が古典的な都市理論とテーマを再検討することを可能にし、デジタル時代の人間の行動や願望に合致した環境を作るのに役立つと論じている。
関連論文リスト
- MetaUrban: A Simulation Platform for Embodied AI in Urban Spaces [52.0930915607703]
最近のロボティクスとエンボディードAIの進歩により、公共の都市空間はもはや人間専用ではない。
フードデリバリーロボットと電動車椅子は歩道を歩行者と共有し始めている。
都市空間の混雑する街路を走行する際には,これらのモバイル機器の汎用性と安全性の確保が不可欠である。
本稿では,都市空間におけるEmbodied AI研究のための合成シミュレーションプラットフォームMetaUrbanを紹介する。
論文 参考訳(メタデータ) (2024-07-11T17:56:49Z) - Visual Knowledge in the Big Model Era: Retrospect and Prospect [63.282425615863]
視覚知識は、視覚概念とその関係を簡潔で包括的で解釈可能な方法でカプセル化できる新しい知識表現である。
視覚世界に関する知識は、人間の認知と知性にとって欠かせない要素として認識されているため、視覚知識は、機械知性を確立する上で重要な役割を担っていると考えられる。
論文 参考訳(メタデータ) (2024-04-05T07:31:24Z) - Recent Trends in 3D Reconstruction of General Non-Rigid Scenes [104.07781871008186]
コンピュータグラフィックスやコンピュータビジョンにおいて、3次元幾何学、外観、実際のシーンの動きを含む現実世界のモデルの再構築が不可欠である。
これは、映画産業やAR/VRアプリケーションに有用な、フォトリアリスティックなノベルビューの合成を可能にする。
この最新技術レポート(STAR)は、モノクロおよびマルチビュー入力による最新技術の概要を読者に提供する。
論文 参考訳(メタデータ) (2024-03-22T09:46:11Z) - Urban Generative Intelligence (UGI): A Foundational Platform for Agents
in Embodied City Environment [32.53845672285722]
複雑な多層ネットワークを特徴とする都市環境は、急速な都市化に直面している重要な課題に直面している。
近年、ビッグデータ、人工知能、都市コンピューティング、デジタル双生児が発展し、洗練された都市モデリングとシミュレーションの基礎を築いた。
本稿では,大規模言語モデル(LLM)を都市システムに統合した新しい基盤プラットフォームである都市生成知能(UGI)を提案する。
論文 参考訳(メタデータ) (2023-12-19T03:12:13Z) - The Urban Toolkit: A Grammar-based Framework for Urban Visual Analytics [5.674216760436341]
都市問題の複雑な性質と利用可能なデータの圧倒的な量は、これらの取り組みを実用的な洞察に翻訳する上で大きな課題を提起している。
興味のある特徴を分析する際、都市の専門家は、異なるテーマ(例えば、日光アクセス、人口統計)と物理的(例えば、建物、ストリートネットワーク)のデータ層を変換し、統合し、視覚化しなければならない。
これにより、プログラマにとって視覚的なデータ探索とシステム実装が難しくなり、コンピュータ科学以外の都市の専門家にとって高い入り口障壁となる。
論文 参考訳(メタデータ) (2023-08-15T13:43:04Z) - Understanding Place Identity with Generative AI [2.1441748927508506]
生成可能なAIモデルは、それらを識別可能な都市全体のイメージをキャプチャする可能性がある。
この研究は、構築された環境の人間の知覚を理解するために、生成的AIの能力を探求する最初の試みの一つである。
論文 参考訳(メタデータ) (2023-06-07T02:32:45Z) - Deep Learning to See: Towards New Foundations of Computer Vision [88.69805848302266]
この本はコンピュータビジョンの分野における科学的進歩を批判している。
情報に基づく自然法則の枠組みにおける視覚の研究を提案する。
論文 参考訳(メタデータ) (2022-06-30T15:20:36Z) - GANs for Urban Design [0.0]
本論文で検討されたトピックは、都市ブロックの設計にGenerative Adversarial Networksを応用することである。
この研究は、都市の形態学的特性に適応できる柔軟なモデルを提示する。
論文 参考訳(メタデータ) (2021-05-04T19:50:24Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z) - State of the Art on Neural Rendering [141.22760314536438]
我々は,古典的コンピュータグラフィックス技術と深層生成モデルを組み合わせることで,制御可能かつフォトリアリスティックな出力を得るアプローチに焦点をあてる。
本報告は,新しいビュー合成,セマンティック写真操作,顔と身体の再現,リライティング,自由視点ビデオ,バーチャルおよび拡張現実テレプレゼンスのためのフォトリアリスティックアバターの作成など,記述されたアルゴリズムの多くの重要なユースケースに焦点をあてる。
論文 参考訳(メタデータ) (2020-04-08T04:36:31Z) - Indexical Cities: Articulating Personal Models of Urban Preference with
Geotagged Data [0.0]
本研究は,都市空間における個人の嗜好を特徴付け,特定の観測者に対する未知の好ましくない場所のスペクトルを予測する。
多くの都市認識研究とは異なり、我々の意図は都市品質の客観的な尺度を提供する手段ではなく、都市や都市についての個人的な見解を表現することである。
論文 参考訳(メタデータ) (2020-01-23T11:00:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。