Fine-Grained Hard Negative Mining: Generalizing Mitosis Detection with a
Fifth of the MIDOG 2022 Dataset
- URL: http://arxiv.org/abs/2301.01079v1
- Date: Tue, 3 Jan 2023 13:06:44 GMT
- Title: Fine-Grained Hard Negative Mining: Generalizing Mitosis Detection with a
Fifth of the MIDOG 2022 Dataset
- Authors: Maxime W. Lafarge and Viktor H. Koelzer
- Abstract summary: We describe a candidate deep learning solution for the Mitosis Domain Generalization Challenge 2022 (MIDOG)
Our approach consists in training a rotation-invariant deep learning model using aggressive data augmentation.
Our model ensemble achieved a F1-score of.697 on the final test set after automated evaluation.
- Score: 1.2183405753834562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Making histopathology image classifiers robust to a wide range of real-world
variability is a challenging task. Here, we describe a candidate deep learning
solution for the Mitosis Domain Generalization Challenge 2022 (MIDOG) to
address the problem of generalization for mitosis detection in images of
hematoxylin-eosin-stained histology slides under high variability (scanner,
tissue type and species variability). Our approach consists in training a
rotation-invariant deep learning model using aggressive data augmentation with
a training set enriched with hard negative examples and automatically selected
negative examples from the unlabeled part of the challenge dataset. To optimize
the performance of our models, we investigated a hard negative mining regime
search procedure that lead us to train our best model using a subset of image
patches representing 19.6% of our training partition of the challenge dataset.
Our candidate model ensemble achieved a F1-score of .697 on the final test set
after automated evaluation on the challenge platform, achieving the third best
overall score in the MIDOG 2022 Challenge.
Related papers
- SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder [13.453138169497903]
SeNM-VAE is a semi-supervised noise modeling method that leverages both paired and unpaired datasets to generate realistic degraded data.
We employ our method to generate paired training samples for real-world image denoising and super-resolution tasks.
Our approach excels in the quality of synthetic degraded images compared to other unpaired and paired noise modeling methods.
arXiv Detail & Related papers (2024-03-26T09:03:40Z) - Image-level supervision and self-training for transformer-based
cross-modality tumor segmentation [2.29206349318258]
We propose a new semi-supervised training strategy called MoDATTS.
MoDATTS is designed for accurate cross-modality 3D tumor segmentation on unpaired bi-modal datasets.
We report that 99% and 100% of this maximum performance can be attained if 20% and 50% of the target data is annotated.
arXiv Detail & Related papers (2023-09-17T11:50:12Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Wild Face Anti-Spoofing Challenge 2023: Benchmark and Results [73.98594459933008]
Face anti-spoofing (FAS) is an essential mechanism for safeguarding the integrity of automated face recognition systems.
This limitation can be attributed to the scarcity and lack of diversity in publicly available FAS datasets.
We introduce the Wild Face Anti-Spoofing dataset, a large-scale, diverse FAS dataset collected in unconstrained settings.
arXiv Detail & Related papers (2023-04-12T10:29:42Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
Domain adaptation is effective in image classification tasks where obtaining sufficient label data is challenging.
We propose a novel method, named SELDA, for stacking ensemble learning via extending three domain adaptation methods.
The experimental results using Age-Related Eye Disease Study (AREDS) benchmark ophthalmic dataset demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2022-09-27T14:19:00Z) - Adaptive Fine-Grained Predicates Learning for Scene Graph Generation [122.4588401267544]
General Scene Graph Generation (SGG) models tend to predict head predicates and re-balancing strategies prefer tail categories.
We propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG.
Our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100, achieving new state-of-the-art performance.
arXiv Detail & Related papers (2022-07-11T03:37:57Z) - A Robust Ensemble Model for Patasitic Egg Detection and Classification [9.449507409551842]
Intestinal parasitic infections, as a leading causes of morbidity worldwide, still lacks time-saving, high-sensitivity and user-friendly examination method.
In this paper, we apply several object detectors such as YOLOv5 and variant cascadeRCNNs to automatically discriminate parasitic eggs in microscope images.
arXiv Detail & Related papers (2022-07-04T13:53:46Z) - Stain-Robust Mitotic Figure Detection for the Mitosis Domain
Generalization Challenge [2.072197863131669]
The MItosis DOmain Generalization (MIDOG) challenge aims to test the robustness of detection models on unseen data from multiple scanners.
We present a short summary of the approach employed by the TIA Centre team to address this challenge.
arXiv Detail & Related papers (2021-09-02T11:44:42Z) - Rotation Invariance and Extensive Data Augmentation: a strategy for the
Mitosis Domain Generalization (MIDOG) Challenge [1.52292571922932]
We present the strategy we applied to participate in the MIDOG 2021 competition.
The purpose of the competition was to evaluate the generalization of solutions to images acquired with unseen target scanners.
We propose a solution based on a combination of state-of-the-art deep learning methods.
arXiv Detail & Related papers (2021-09-02T10:09:02Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.