Stain-Robust Mitotic Figure Detection for the Mitosis Domain
Generalization Challenge
- URL: http://arxiv.org/abs/2109.00853v1
- Date: Thu, 2 Sep 2021 11:44:42 GMT
- Title: Stain-Robust Mitotic Figure Detection for the Mitosis Domain
Generalization Challenge
- Authors: Mostafa Jahanifar, Adam Shephard, Neda Zamani Tajeddin, R.M. Saad
Bashir, Mohsin Bilal, Syed Ali Khurram, Fayyaz Minhas, and Nasir Rajpoot
- Abstract summary: The MItosis DOmain Generalization (MIDOG) challenge aims to test the robustness of detection models on unseen data from multiple scanners.
We present a short summary of the approach employed by the TIA Centre team to address this challenge.
- Score: 2.072197863131669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The detection of mitotic figures from different scanners/sites remains an
important topic of research, owing to its potential in assisting clinicians
with tumour grading. The MItosis DOmain Generalization (MIDOG) challenge aims
to test the robustness of detection models on unseen data from multiple
scanners for this task. We present a short summary of the approach employed by
the TIA Centre team to address this challenge. Our approach is based on a
hybrid detection model, where mitotic candidates are segmented on stain
normalised images, before being refined by a deep learning classifier.
Cross-validation on the training images achieved the F1-score of 0.786 and
0.765 on the preliminary test set, demonstrating the generalizability of our
model to unseen data from new scanners.
Related papers
- Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.
A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.
This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Fine-Grained Hard Negative Mining: Generalizing Mitosis Detection with a
Fifth of the MIDOG 2022 Dataset [1.2183405753834562]
We describe a candidate deep learning solution for the Mitosis Domain Generalization Challenge 2022 (MIDOG)
Our approach consists in training a rotation-invariant deep learning model using aggressive data augmentation.
Our model ensemble achieved a F1-score of.697 on the final test set after automated evaluation.
arXiv Detail & Related papers (2023-01-03T13:06:44Z) - An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images [4.640835690336653]
We propose an ensemble method to automatically grade Diabetic retinopathy (DR) images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022.
First, we adopt the state-of-the-art classification networks, and train them to grade UW- OCTA images with different splits of the available dataset.
Ultimately, we obtain 25 models, of which, the top 16 models are selected and ensembled to generate the final predictions.
arXiv Detail & Related papers (2022-12-12T22:06:47Z) - FetReg2021: A Challenge on Placental Vessel Segmentation and
Registration in Fetoscopy [52.3219875147181]
Fetoscopic laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS)
The procedure is particularly challenging due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility, and variability in illumination.
Computer-assisted intervention (CAI) can provide surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking.
Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fet
arXiv Detail & Related papers (2022-06-24T23:44:42Z) - Rotation Invariance and Extensive Data Augmentation: a strategy for the
Mitosis Domain Generalization (MIDOG) Challenge [1.52292571922932]
We present the strategy we applied to participate in the MIDOG 2021 competition.
The purpose of the competition was to evaluate the generalization of solutions to images acquired with unseen target scanners.
We propose a solution based on a combination of state-of-the-art deep learning methods.
arXiv Detail & Related papers (2021-09-02T10:09:02Z) - Ensemble of CNN classifiers using Sugeno Fuzzy Integral Technique for
Cervical Cytology Image Classification [1.6986898305640261]
We propose a fully automated computer-aided diagnosis tool for classifying single-cell and slide images of cervical cancer.
We use the Sugeno Fuzzy Integral to ensemble the decision scores from three popular deep learning models, namely, Inception v3, DenseNet-161 and ResNet-34.
arXiv Detail & Related papers (2021-08-21T08:41:41Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.