A Comprehensive Guide to Explainable AI: From Classical Models to LLMs
- URL: http://arxiv.org/abs/2412.00800v2
- Date: Sun, 08 Dec 2024 06:24:32 GMT
- Title: A Comprehensive Guide to Explainable AI: From Classical Models to LLMs
- Authors: Weiche Hsieh, Ziqian Bi, Chuanqi Jiang, Junyu Liu, Benji Peng, Sen Zhang, Xuanhe Pan, Jiawei Xu, Jinlang Wang, Keyu Chen, Pohsun Feng, Yizhu Wen, Xinyuan Song, Tianyang Wang, Ming Liu, Junjie Yang, Ming Li, Bowen Jing, Jintao Ren, Junhao Song, Hong-Ming Tseng, Yichao Zhang, Lawrence K. Q. Yan, Qian Niu, Silin Chen, Yunze Wang, Chia Xin Liang,
- Abstract summary: Explainable Artificial Intelligence (XAI) addresses the growing need for transparency and interpretability in AI systems.
It explores interpretability in traditional models like Decision Trees, Linear Regression, and Support Vector Machines.
The book presents practical techniques such as SHAP, LIME, Grad-CAM, counterfactual explanations, and causal inference.
- Score: 25.07463077055411
- License:
- Abstract: Explainable Artificial Intelligence (XAI) addresses the growing need for transparency and interpretability in AI systems, enabling trust and accountability in decision-making processes. This book offers a comprehensive guide to XAI, bridging foundational concepts with advanced methodologies. It explores interpretability in traditional models such as Decision Trees, Linear Regression, and Support Vector Machines, alongside the challenges of explaining deep learning architectures like CNNs, RNNs, and Large Language Models (LLMs), including BERT, GPT, and T5. The book presents practical techniques such as SHAP, LIME, Grad-CAM, counterfactual explanations, and causal inference, supported by Python code examples for real-world applications. Case studies illustrate XAI's role in healthcare, finance, and policymaking, demonstrating its impact on fairness and decision support. The book also covers evaluation metrics for explanation quality, an overview of cutting-edge XAI tools and frameworks, and emerging research directions, such as interpretability in federated learning and ethical AI considerations. Designed for a broad audience, this resource equips readers with the theoretical insights and practical skills needed to master XAI. Hands-on examples and additional resources are available at the companion GitHub repository: https://github.com/Echoslayer/XAI_From_Classical_Models_to_LLMs.
Related papers
- Explainable artificial intelligence (XAI): from inherent explainability to large language models [0.0]
Explainable AI (XAI) techniques facilitate the explainability or interpretability of machine learning models.
This paper details the advancements of explainable AI methods, from inherently interpretable models to modern approaches.
We review explainable AI techniques that leverage vision-language model (VLM) frameworks to automate or improve the explainability of other machine learning models.
arXiv Detail & Related papers (2025-01-17T06:16:57Z) - Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction [5.417632175667161]
Explainable Artificial Intelligence (XAI) addresses challenges by providing explanations for how these models make decisions and predictions.
Existing studies have examined the fundamental concepts of XAI, its general principles, and the scope of XAI techniques.
This paper provides a comprehensive literature review encompassing common terminologies and definitions, the need for XAI, beneficiaries of XAI, a taxonomy of XAI methods, and the application of XAI methods in different application areas.
arXiv Detail & Related papers (2024-08-30T21:42:17Z) - Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era [77.174117675196]
XAI is being extended towards Large Language Models (LLMs)
This paper analyzes how XAI can benefit LLMs and AI systems.
We introduce 10 strategies, introducing the key techniques for each and discussing their associated challenges.
arXiv Detail & Related papers (2024-03-13T20:25:27Z) - XAI for All: Can Large Language Models Simplify Explainable AI? [0.0699049312989311]
"x-[plAIn]" is a new approach to make XAI more accessible to a wider audience through a custom Large Language Model.
Our goal was to design a model that can generate clear, concise summaries of various XAI methods.
Results from our use-case studies show that our model is effective in providing easy-to-understand, audience-specific explanations.
arXiv Detail & Related papers (2024-01-23T21:47:12Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - OmniXAI: A Library for Explainable AI [98.07381528393245]
We introduce OmniXAI, an open-source Python library of eXplainable AI (XAI)
It offers omni-way explainable AI capabilities and various interpretable machine learning techniques.
For practitioners, the library provides an easy-to-use unified interface to generate the explanations for their applications.
arXiv Detail & Related papers (2022-06-01T11:35:37Z) - A Practical Tutorial on Explainable AI Techniques [5.671062637797752]
This tutorial is meant to be the go-to handbook for any audience with a computer science background.
It aims at getting intuitive insights of machine learning models, accompanied with straight, fast, and intuitive explanations out of the box.
arXiv Detail & Related papers (2021-11-13T17:47:31Z) - Rational Shapley Values [0.0]
Most popular tools for post-hoc explainable artificial intelligence (XAI) are either insensitive to context or difficult to summarize.
I introduce emphrational Shapley values, a novel XAI method that synthesizes and extends these seemingly incompatible approaches.
I leverage tools from decision theory and causal modeling to formalize and implement a pragmatic approach that resolves a number of known challenges in XAI.
arXiv Detail & Related papers (2021-06-18T15:45:21Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.