論文の概要: Self-Averaging of Digital MemComputing Machines
- arxiv url: http://arxiv.org/abs/2301.08787v1
- Date: Fri, 20 Jan 2023 20:09:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 16:34:41.872995
- Title: Self-Averaging of Digital MemComputing Machines
- Title(参考訳): デジタルmem計算機の自己平均化
- Authors: Daniel Primosch, Yuan-Hang Zhang and Massimiliano Di Ventra
- Abstract要約: Digital MemCompComp Machine (DMM) は、最適化問題を解くためにメモリを持つ非量子力学系を使用する新しいコンピュータのクラスである。
DMMの解法時間(TTS)は逆ガウス分布に従っており、TTSは問題サイズを増大させる。
本研究では,この現象の解析的理解と3-SAT問題の解法による数値的エビデンスを提供する。
- 参考スコア(独自算出の注目度): 7.4162825640052485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital MemComputing machines (DMMs) are a new class of computing machines
that employ non-quantum dynamical systems with memory to solve combinatorial
optimization problems. Here, we show that the time to solution (TTS) of DMMs
follows an inverse Gaussian distribution, with the TTS self-averaging with
increasing problem size, irrespective of the problem they solve. We provide
both an analytical understanding of this phenomenon and numerical evidence by
solving instances of the 3-SAT (satisfiability) problem. The self-averaging
property of DMMs with problem size implies that they are increasingly
insensitive to the detailed features of the instances they solve. This is in
sharp contrast to traditional algorithms applied to the same problems,
illustrating another advantage of this physics-based approach to computation.
- Abstract(参考訳): digital memcomputing machines (dmms) は非量子力学系とメモリを併用して組合せ最適化問題を解決する新しい計算機械である。
本稿では, DMM の解法時間 (TTS) が逆ガウス分布に従うことを示す。
本研究では,この現象の解析的理解と3-SAT問題の解法による数値的証拠を提供する。
問題サイズを持つDMMの自己改善特性は、それらが解決するインスタンスの詳細な特徴に敏感であることを示している。
これは、同じ問題に適用される従来のアルゴリズムとは対照的であり、この物理ベースの計算アプローチの別の利点を示している。
関連論文リスト
- On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z) - AI-enhanced iterative solvers for accelerating the solution of large
scale parametrized linear systems of equations [0.0]
本稿では、最新のMLツールを活用し、線形方程式系の反復解法をカスタマイズする。
その結果,従来の反復解法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-07-06T09:47:14Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
論文 参考訳(メタデータ) (2022-03-21T21:51:19Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNFベースのSATとMaxSATは論理合成と検証システムの中心である。
そこで本研究では,Transformerアーキテクチャから派生したワンショットモデルを用いて,MaxSAT問題の解法を提案する。
論文 参考訳(メタデータ) (2021-07-15T04:47:35Z) - Directed percolation and numerical stability of simulations of digital
memcomputing machines [8.761355402590105]
DMM(Digital memcomputing Machine)は、最適化問題を解決するために設計された新しい非解決型マシンである。
これらのマシンは、メモリを持つ連続時間非量子力学系で物理的に実現することができる。
多くの困難問題の解は、DMMのODEを数値的に統合することによって報告されている。
論文 参考訳(メタデータ) (2021-02-06T09:44:28Z) - Non-intrusive surrogate modeling for parametrized time-dependent PDEs
using convolutional autoencoders [0.0]
パラメータ化時間依存PDEによる複雑系の予測モデリングのための機械学習に基づく非侵襲的代理モデリング手法を提案する。
我々は、畳み込みオートエンコーダをフィードフォワードニューラルネットワークと組み合わせて、問題のパラメトリック空間から解空間への低コストで正確なマッピングを確立する。
論文 参考訳(メタデータ) (2021-01-14T11:34:58Z) - Machine Number Sense: A Dataset of Visual Arithmetic Problems for
Abstract and Relational Reasoning [95.18337034090648]
文法モデルを用いて自動生成される視覚的算術問題からなるデータセット、MNS(Machine Number Sense)を提案する。
これらの視覚的算術問題は幾何学的フィギュアの形をしている。
我々は、この視覚的推論タスクのベースラインとして、4つの主要なニューラルネットワークモデルを用いて、MNSデータセットをベンチマークする。
論文 参考訳(メタデータ) (2020-04-25T17:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。