論文の概要: PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations
- arxiv url: http://arxiv.org/abs/2203.11363v1
- Date: Mon, 21 Mar 2022 21:51:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-23 13:12:43.245716
- Title: PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations
- Title(参考訳): PI-VAE:確率微分方程式に対する物理インフォームド変分オートエンコーダ
- Authors: Weiheng Zhong and Hadi Meidani
- Abstract要約: 我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
- 参考スコア(独自算出の注目度): 2.741266294612776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new class of physics-informed neural networks, called
physics-informed Variational Autoencoder (PI-VAE), to solve stochastic
differential equations (SDEs) or inverse problems involving SDEs. In these
problems the governing equations are known but only a limited number of
measurements of system parameters are available. PI-VAE consists of a
variational autoencoder (VAE), which generates samples of system variables and
parameters. This generative model is integrated with the governing equations.
In this integration, the derivatives of VAE outputs are readily calculated
using automatic differentiation, and used in the physics-based loss term. In
this work, the loss function is chosen to be the Maximum Mean Discrepancy (MMD)
for improved performance, and neural network parameters are updated iteratively
using the stochastic gradient descent algorithm. We first test the proposed
method on approximating stochastic processes. Then we study three types of
problems related to SDEs: forward and inverse problems together with mixed
problems where system parameters and solutions are simultaneously calculated.
The satisfactory accuracy and efficiency of the proposed method are numerically
demonstrated in comparison with physics-informed generative adversarial network
(PI-WGAN).
- Abstract(参考訳): 本研究では、確率微分方程式(SDE)や逆問題(SDE)を解くために、物理インフォームド変分オートコーダ(PI-VAE)と呼ばれる新しい種類の物理インフォームドニューラルネットワークを提案する。
これらの問題では、支配方程式は知られているが、システムパラメータの測定は限られている。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
この生成モデルは支配方程式と統合される。
この積分において、VAE出力の微分は自動的に微分され、物理学に基づく損失項で用いられる。
本研究では、性能向上のための最大平均不一致(mmd)として損失関数を選択し、確率的勾配降下アルゴリズムを用いてニューラルネットワークパラメータを反復更新する。
まず, 確率過程を近似する手法を検証した。
次に,システムパラメータと解が同時に計算される混合問題とともに,sdesに関連する3つの問題について検討する。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
関連論文リスト
- PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - Physics-Informed Generator-Encoder Adversarial Networks with Latent
Space Matching for Stochastic Differential Equations [14.999611448900822]
微分方程式における前方・逆・混合問題に対処するために,新しい物理情報ニューラルネットワークのクラスを提案する。
我々のモデルは、ジェネレータとエンコーダの2つのキーコンポーネントで構成され、どちらも勾配降下によって交互に更新される。
従来の手法とは対照的に、より低次元の潜在特徴空間内で機能する間接マッチングを用いる。
論文 参考訳(メタデータ) (2023-11-03T04:29:49Z) - PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial
Networks for Stochastic Differential Equations [14.044012646069552]
本稿では,新しい物理インフォームドニューラルネットワーク(PI-VEGAN)について紹介する。
PI-VEGANは微分方程式の前方、逆、混合問題に効果的に取り組む。
我々は,システムパラメータと解の同時計算を必要とする,前方・逆・混合問題に対するPI-VEGANの有効性を評価する。
論文 参考訳(メタデータ) (2023-07-21T01:18:02Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Physics-informed Neural Network: The Effect of Reparameterization in
Solving Differential Equations [0.0]
複雑な物理学では、解析的に解くのが難しい微分方程式がほとんどである。
近年, 物理インフォームドニューラルネットワークは, 様々な微分方程式の解法系において, 非常によく機能することが示されている。
論文 参考訳(メタデータ) (2023-01-28T07:53:26Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
科学と工学にまたがる多くの応用分野において、偏微分方程式(PDE)によって定義される制約で逆問題を解決することに興味がある。
ここでは、これらのPDE制約された逆問題を解決するために、GNNを探索する。
GNNを用いて計算速度を最大90倍に向上させる。
論文 参考訳(メタデータ) (2022-06-01T18:48:01Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。