論文の概要: Benchmarking Quantum Circuit Transformation with QKNOB Circuits
- arxiv url: http://arxiv.org/abs/2301.08932v2
- Date: Fri, 20 Dec 2024 20:30:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:04.484607
- Title: Benchmarking Quantum Circuit Transformation with QKNOB Circuits
- Title(参考訳): QKNOB回路を用いた量子回路のベンチマーク
- Authors: Sanjiang Li, Xiangzhen Zhou, Yuan Feng,
- Abstract要約: 超伝導量子デバイスは、量子回路の実行に厳格な接続制約を課す。
本稿では,量子回路変換のための新しいベンチマーク構築手法であるQKNOBを紹介する。
我々は、デフォルトのQiskitコンパイラであるSABREが、53量子ビットのIBM Q RochesterとGoogle Sycamoreデバイス上で一貫して最高のパフォーマンスを達成していることを示す。
- 参考スコア(独自算出の注目度): 4.518076543914809
- License:
- Abstract: Current superconducting quantum devices impose strict connectivity constraints on quantum circuit execution, necessitating circuit transformation before executing quantum circuits on physical hardware. Numerous quantum circuit transformation (QCT) algorithms have been proposed. To enable faithful evaluation of state-of-the-art QCT algorithms, this paper introduces QKNOB (Qubit mapping Benchmark with Known Near-Optimality), a novel benchmark construction method for QCT. QKNOB circuits have built-in transformations with near-optimal (close to the theoretical optimum) SWAP count and depth overhead. QKNOB provides general and unbiased evaluation of QCT algorithms. Using QKNOB, we demonstrate that SABRE, the default Qiskit compiler, consistently achieves the best performance on the 53-qubit IBM Q Rochester and Google Sycamore devices for both SWAP count and depth objectives. Our results also reveal significant performance gaps relative to the near-optimal transformation costs of QKNOB. Our construction algorithm and benchmarks are open-source.
- Abstract(参考訳): 現在の超伝導量子デバイスは、物理ハードウェア上で量子回路を実行する前に、回路変換を必要とする量子回路の実行に厳格な接続制約を課している。
多数の量子回路変換(QCT)アルゴリズムが提案されている。
本稿では,QCTのベンチマーク構築手法であるQKNOB(Qubit mapping Benchmark with Known Near-Optimality)を提案する。
QKNOB回路は、ほぼ最適(理論上の最適値に近い)SWAP数と深さオーバーヘッドを持つ組込み変換を持つ。
QKNOBはQCTアルゴリズムの一般および非バイアス評価を提供する。
QKNOBを用いて、デフォルトのQiskitコンパイラであるSABREが、SWAPカウントと深さ目的の両方に対して、53量子ビットのIBM Q RochesterとGoogle Sycamoreデバイス上で一貫して最高の性能を達成していることを示す。
また,QKNOBの準最適変換コストに比較して,高い性能差が認められた。
構築アルゴリズムとベンチマークはオープンソースです。
関連論文リスト
- Block encoding by signal processing [0.0]
単位行列に対する量子特異値変換(QSVT)や量子固有値変換(QETU)といったQSPベースの手法がBEの実装に有効に利用できることを示す。
本稿では,QSVTアルゴリズムとQETUアルゴリズムと組み合わせて,格子ボソンに対するハミルトニアンの符号化をブロックするいくつかの例を示す。
QSVTをBEに使用すると、サイト毎のキュービット数で最高のゲートカウントスケーリングが得られるが、LOVE-LCUは最大$lesssim11$ qubitsの演算子に対して、他のすべてのメソッドよりも優れている。
論文 参考訳(メタデータ) (2024-08-29T18:00:02Z) - Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcingは量子回路マッピングアルゴリズムで、平均スピードアップが3.7Times$であることを示している。
本稿では、最先端のスケーラブルな手法と比較して平均3.7倍の高速化を示す量子回路マッピングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T14:21:41Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - KetGPT -- Dataset Augmentation of Quantum Circuits using Transformers [1.236829197968612]
量子回路として表現される量子アルゴリズムは、量子システムの性能を評価するためのベンチマークとして用いられる。
しかしランダム回路は、実際の量子アルゴリズム固有の性質を欠いているため、代表的なベンチマークではない。
この研究は、我々が「リアルに見える」回路と呼ぶものを生成することによって、既存の量子回路データセットを強化することを目的としている。
論文 参考訳(メタデータ) (2024-02-20T20:02:21Z) - Indirect Quantum Approximate Optimization Algorithms: application to the
TSP [1.1786249372283566]
量子交互作用素 Ansatz はベクトルの集合を記述するハミルトニアンを効率的にモデル化するためにユニタリ作用素の一般パラメータ化された族を考える。
このアルゴリズムは,(1)量子マシン上で実行される量子パラメトリゼーション回路が弦ベクトルの集合をモデル化し,(2)古典機械で実行される古典的メタ最適化ループ,(3)各弦ベクトル計算の平均コストを推定する。
論文 参考訳(メタデータ) (2023-11-06T17:39:14Z) - GASP -- A Genetic Algorithm for State Preparation [0.0]
本稿では、量子コンピュータを特定の量子状態に初期化するための、比較的低深さの量子回路を生成する状態準備(GASP)のための遺伝的アルゴリズムを提案する。
GASPは、他の方法よりも低い深さとゲート数で、所定の精度でより効率的な回路を生成することができる。
論文 参考訳(メタデータ) (2023-02-22T04:41:01Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
本稿では,高レベル言語で記述された量子回路から,アルゴリズム固有のグラフ状態を作成する量子回路コンパイラを提案する。
この計算は、このグラフ状態に関する一連の非パウリ測度を用いて実装することができる。
論文 参考訳(メタデータ) (2022-09-15T14:52:31Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Verifying Results of the IBM Qiskit Quantum Circuit Compilation Flow [7.619626059034881]
本稿では,量子回路等価性チェックのための効率的な手法を提案する。
提案方式では,数万の操作を数秒以下で行う大規模回路インスタンスの検証が可能となる。
論文 参考訳(メタデータ) (2020-09-04T19:58:53Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。