論文の概要: Federated Sufficient Dimension Reduction Through High-Dimensional Sparse
Sliced Inverse Regression
- arxiv url: http://arxiv.org/abs/2301.09500v1
- Date: Mon, 23 Jan 2023 15:53:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 13:17:16.620826
- Title: Federated Sufficient Dimension Reduction Through High-Dimensional Sparse
Sliced Inverse Regression
- Title(参考訳): 高次元スパーススライス逆回帰によるフェデレートな次元削減
- Authors: Wenquan Cui, Yue Zhao, Jianjun Xu, Haoyang Cheng
- Abstract要約: フェデレーション学習は、ビッグデータ時代において、近年人気の高いツールとなっている。
本稿では,初めてフェデレートされたスパースススライス逆回帰アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 4.561305216067566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning has become a popular tool in the big data era nowadays. It
trains a centralized model based on data from different clients while keeping
data decentralized. In this paper, we propose a federated sparse sliced inverse
regression algorithm for the first time. Our method can simultaneously estimate
the central dimension reduction subspace and perform variable selection in a
federated setting. We transform this federated high-dimensional sparse sliced
inverse regression problem into a convex optimization problem by constructing
the covariance matrix safely and losslessly. We then use a linearized
alternating direction method of multipliers algorithm to estimate the central
subspace. We also give approaches of Bayesian information criterion and
hold-out validation to ascertain the dimension of the central subspace and the
hyper-parameter of the algorithm. We establish an upper bound of the
statistical error rate of our estimator under the heterogeneous setting. We
demonstrate the effectiveness of our method through simulations and real world
applications.
- Abstract(参考訳): フェデレーション学習は、ビッグデータ時代において、近年人気ツールとなっている。
データを分散化しながら、異なるクライアントのデータに基づいて集中モデルをトレーニングする。
本稿では,フェデレートされたスパースススライス逆回帰アルゴリズムを初めて提案する。
本手法では,中央次元縮小部分空間を同時推定し,フェデレーション設定で変数選択を行うことができる。
共分散行列を安全かつ無損失に構成することにより, この連立高次元スパースス逆回帰問題を凸最適化問題に変換する。
次に、乗算アルゴリズムの線形交互方向法を用いて中央部分空間を推定する。
また、中央部分空間の次元とアルゴリズムのハイパーパラメータを確認するため、ベイズ情報規準とホールドアウト検証のアプローチを提案する。
我々は,不均質な設定下で推定器の統計的誤差率の上限を定式化する。
本手法の有効性をシミュレーションと実世界応用により実証する。
関連論文リスト
- A Historical Trajectory Assisted Optimization Method for Zeroth-Order Federated Learning [24.111048817721592]
フェデレートラーニングは分散勾配降下技術に大きく依存している。
勾配情報が得られない状況では、勾配をゼロ次情報から推定する必要がある。
勾配推定法を改善するための非等方的サンプリング法を提案する。
論文 参考訳(メタデータ) (2024-09-24T10:36:40Z) - Riemannian Federated Learning via Averaging Gradient Stream [8.75592575216789]
本稿では,RFedAGS(Federated Averaging Gradient Stream)アルゴリズムの開発と解析を行う。
合成および実世界のデータを用いて数値シミュレーションを行い,提案したRFedAGSの性能を実証した。
論文 参考訳(メタデータ) (2024-09-11T12:28:42Z) - A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting [0.0]
本研究は, ノイズおよび外周波の汚染における散乱データに多次元楕円体を適合させる, 新規で効果的な方法を提案する。
楕円体領域内でのプリミティブパラメータの探索を制約するために、均一な事前分布を組み込む。
本研究では, 顕微鏡細胞計数, 3次元再構成, 幾何学的形状近似, 磁力計の校正タスクなど, 幅広い応用に応用する。
論文 参考訳(メタデータ) (2024-07-27T14:31:51Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
ガウス過程の回帰は、よく校正された不確実性推定を提供するために広く用いられている。
これは、データが実際に存在する暗黙の低次元多様体のため、高次元データに苦しむ。
本稿では,データ(ラベル付きおよびラベルなし)から直接暗黙構造を完全に微分可能な方法で推定できる手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T09:52:48Z) - Iterative Sketching for Secure Coded Regression [66.53950020718021]
分散線形回帰を高速化する手法を提案する。
具体的には、方程式の系の基礎をランダムに回転させ、次にサブサンプルブロックを回転させ、情報を同時に確保し、回帰問題の次元を小さくする。
論文 参考訳(メタデータ) (2023-08-08T11:10:42Z) - Distributed Semi-Supervised Sparse Statistical Inference [6.685997976921953]
縮退推定器は高次元モデルパラメータの統計的推測において重要なツールである。
従来の手法では、すべてのマシンで偏りのある推定器を計算する必要がある。
ラベル付きデータと非ラベル付きデータを統合した効率的なマルチラウンド分散脱バイアス推定器を開発した。
論文 参考訳(メタデータ) (2023-06-17T17:30:43Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Dimension Reduction and Data Visualization for Fr\'echet Regression [8.713190936209156]
Fr'echet回帰モデルは、計量空間値応答を用いた回帰分析のための有望なフレームワークを提供する。
本研究では,Fr'echet回帰のためのフレキシブルな十分次元縮小法(SDR)を導入し,二つの目的を達成した。
論文 参考訳(メタデータ) (2021-10-01T15:01:32Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z) - Optimal Feature Manipulation Attacks Against Linear Regression [64.54500628124511]
本稿では,データセットに慎重に設計した有害なデータポイントを付加したり,元のデータポイントを修正したりすることで,線形回帰による係数の操作方法について検討する。
エネルギー予算を考慮し, 目標が指定された回帰係数を1つ変更する場合に, 最適毒素データ点の閉形式解をまず提示する。
次に、攻撃者が1つの特定の回帰係数を変更しつつ、他をできるだけ小さく変更することを目的とした、より困難なシナリオに分析を拡張します。
論文 参考訳(メタデータ) (2020-02-29T04:26:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。