論文の概要: Semantic Network Model for Sign Language Comprehension
- arxiv url: http://arxiv.org/abs/2301.11709v1
- Date: Fri, 27 Jan 2023 13:43:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-30 15:37:55.252811
- Title: Semantic Network Model for Sign Language Comprehension
- Title(参考訳): 手話理解のための意味ネットワークモデル
- Authors: Xinchen Kang (1), Dengfeng Yao (1,2), Minghu Jiang (2), Yunlong Huang
(2) and Fanshu Li (1) ((1) Beijing Key Lab of Information Service
Engineering, Beijing Union University, Beijing, China. (2) Lab of
Computational Linguistics, Tsinghua University, Beijing, China.)
- Abstract要約: 概念間の意味的関係を表す意味ネットワークモデル(SNM)は知識表現の一形態として用いられる。
拡散活性化探索法は、一連のソースノードに重みまたは「アクティベーション」をラベル付けし、そのアクティベーションをソースノードにリンクされた他のノードに反復的に伝播または「スプレッディング」することで開始される。
提案手法はSNMにおける手話理解性能を向上することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, the authors propose a computational cognitive model for sign
language (SL) perception and comprehension with detailed algorithmic
descriptions based on cognitive functionalities in human language processing.
The semantic network model (SNM) that represents semantic relations between
concepts, it is used as a form of knowledge representation. The proposed model
is applied in the comprehension of sign language for classifier predicates. The
spreading activation search method is initiated by labeling a set of source
nodes (e.g. concepts in the semantic network) with weights or "activation" and
then iteratively propagating or "spreading" that activation out to other nodes
linked to the source nodes. The results demonstrate that the proposed search
method improves the performance of sign language comprehension in the SNM.
- Abstract(参考訳): 本研究では,人間の言語処理における認知機能に基づいた,手話(SL)知覚と詳細なアルゴリズム記述の理解のための計算認知モデルを提案する。
概念間の意味的関係を表す意味ネットワークモデル(SNM)は、知識表現の一形態として用いられる。
提案手法は手話の理解に応用される。
拡散活性化探索法は、一連のソースノード(例えば、セマンティックネットワークにおける概念)にウェイトまたは「アクティベーション」をラベル付けし、そのアクティベーションをソースノードにリンクされた他のノードに反復的に伝播または「スプレッディング」することで開始される。
提案手法により,snmにおける手話理解の性能が向上することを示す。
関連論文リスト
- Semantic Communication Enhanced by Knowledge Graph Representation Learning [11.68356846628016]
本稿では,意味的コミュニケーションの新たなパラダイムにおいて,グラフに抽出された意味的知識の表現と処理の利点について検討する。
本稿では,無線チャネルを通じてノード埋め込みと等価な意味記号を送信し,受信側で完全な知識グラフを推測する。
論文 参考訳(メタデータ) (2024-07-27T20:57:10Z) - Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
本研究では,空間的時間的整合性を通じてリッチな文脈を探索する自己教師付きコントラスト学習フレームワークを提案する。
動きと関節のモーダル性の相補性に着想を得て,手話モデルに一階動作情報を導入する。
提案手法は,4つの公開ベンチマークの広範な実験により評価され,新しい最先端性能と顕著なマージンを実現している。
論文 参考訳(メタデータ) (2024-06-15T04:50:19Z) - Pixel Sentence Representation Learning [67.4775296225521]
本研究では,視覚表現学習プロセスとして,文レベルのテキスト意味論の学習を概念化する。
タイポスや単語順シャッフルのような視覚的に接地されたテキスト摂動法を採用し、人間の認知パターンに共鳴し、摂動を連続的に認識できるようにする。
我々のアプローチは、大規模に教師なしのトピックアライメントトレーニングと自然言語推論監督によってさらに強化されている。
論文 参考訳(メタデータ) (2024-02-13T02:46:45Z) - Grounded learning for compositional vector semantics [1.4344589271451351]
本研究では、スパイクニューラルネットワークアーキテクチャ内で構成分布意味論を実装する方法を提案する。
また,ラベル付き画像を用いて単語表現を訓練する手法についても述べる。
論文 参考訳(メタデータ) (2024-01-10T22:12:34Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
事前訓練された言語モデルにおけるディープニューラルネットワークのブラックボックス構造は、言語モデリングプロセスの解釈可能性を大幅に制限する。
解釈不能なニューラル表現と解釈不能な統計論理のアライメント処理を導入することで,ワードコンテキスト結合空間(W2CSpace)を提案する。
我々の言語モデルは,関連する最先端手法と比較して,優れた性能と信頼性の高い解釈能力を実現することができる。
論文 参考訳(メタデータ) (2023-05-19T09:26:02Z) - Imitation Learning-based Implicit Semantic-aware Communication Networks:
Multi-layer Representation and Collaborative Reasoning [68.63380306259742]
有望な可能性にもかかわらず、セマンティック通信とセマンティック・アウェア・ネットワーキングはまだ初期段階にある。
本稿では,CDCとエッジサーバの複数層を連携させる,推論に基づく暗黙的セマンティック・アウェア通信ネットワークアーキテクチャを提案する。
暗黙的セマンティクスの階層構造と個人ユーザのパーソナライズされた推論嗜好を考慮に入れたセマンティクス情報の多層表現を提案する。
論文 参考訳(メタデータ) (2022-10-28T13:26:08Z) - Network Representation Learning: From Preprocessing, Feature Extraction
to Node Embedding [9.844802841686105]
ネットワーク表現学習(NRL)は、ソーシャルネットワーク、知識グラフ、複雑なバイオメディカルおよび物理情報ネットワークの従来のグラフマイニングを進歩させる。
本稿では,同種ネットワーク上でのネットワーク表現学習における設計原理と異なるノード埋め込み手法について概説する。
論文 参考訳(メタデータ) (2021-10-14T17:46:37Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Self-Supervised Learning of Contextual Embeddings for Link Prediction in
Heterogeneous Networks [11.540329725077843]
本研究では,グラフ全体からのグローバル情報を用いた静的表現学習手法をブリッジするフレームワークであるSLiCEを開発する。
まず、上位のセマンティックアソシエーションやマスキングノードを導入し、自己教師付きでモデルを事前訓練する。
また、セマンティックアソシエーション行列を解釈し、ネットワーク内の異種ノード間のリンク予測を成功させるために、その有用性と関連性を提供する。
論文 参考訳(メタデータ) (2020-07-22T03:48:53Z) - Semantics-Aware Inferential Network for Natural Language Understanding [79.70497178043368]
このようなモチベーションを満たすために,セマンティックス対応推論ネットワーク(SAIN)を提案する。
SAINの推論モジュールは、明示的な文脈的セマンティクスを補完的な入力として、セマンティクス上の一連の推論ステップを可能にする。
本モデルでは,機械読解や自然言語推論など11タスクの大幅な改善を実現している。
論文 参考訳(メタデータ) (2020-04-28T07:24:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。