論文の概要: Transformers Meet Directed Graphs
- arxiv url: http://arxiv.org/abs/2302.00049v2
- Date: Thu, 29 Jun 2023 12:47:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 19:29:47.480558
- Title: Transformers Meet Directed Graphs
- Title(参考訳): TransformersがDirected Graphsを発表
- Authors: Simon Geisler, Yujia Li, Daniel Mankowitz, Ali Taylan Cemgil, Stephan
G\"unnemann, Cosmin Paduraru
- Abstract要約: 有向グラフの変換は、ユビキタスドメインに適用可能であるにもかかわらず、驚くほど過小評価されているトピックである。
本研究では、有向グラフに対する2つの方向対応および構造対応の位置符号化を提案する。
ソートネットワークの正当性テストやソースコード理解など,様々な下流タスクにおいて,余分な方向性情報が有用であることを示す。
- 参考スコア(独自算出の注目度): 12.63471551538861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformers were originally proposed as a sequence-to-sequence model for
text but have become vital for a wide range of modalities, including images,
audio, video, and undirected graphs. However, transformers for directed graphs
are a surprisingly underexplored topic, despite their applicability to
ubiquitous domains, including source code and logic circuits. In this work, we
propose two direction- and structure-aware positional encodings for directed
graphs: (1) the eigenvectors of the Magnetic Laplacian - a direction-aware
generalization of the combinatorial Laplacian; (2) directional random walk
encodings. Empirically, we show that the extra directionality information is
useful in various downstream tasks, including correctness testing of sorting
networks and source code understanding. Together with a data-flow-centric graph
construction, our model outperforms the prior state of the art on the Open
Graph Benchmark Code2 relatively by 14.7%.
- Abstract(参考訳): トランスフォーマーは当初、テキストのシーケンシャル・ツー・シーケンスモデルとして提案されたが、画像、オーディオ、ビデオ、無向グラフなど、幅広いモダリティにおいて不可欠となった。
しかし、有向グラフのトランスフォーマーは、ソースコードや論理回路を含むユビキタスなドメインに適用できるにもかかわらず、驚くほど未熟な話題である。
本研究では,(1)磁気ラプラシアンの固有ベクトル,(2)組合せラプラシアンの方向認識一般化,(2)方向ランダムウォークエンコーディングという,有向グラフに対する方向認識と構造認識の2つの位置符号化を提案する。
実験では,ソートネットワークの正当性テストやソースコード理解など,下流のさまざまなタスクにおいて,方向情報の追加が有効であることを示す。
データフロー中心のグラフ構築とともに、我々のモデルはOpen Graph Benchmark Code2における技術の先行状態を14.7%向上させる。
関連論文リスト
- Graph Transformers Dream of Electric Flow [72.06286909236827]
グラフデータに適用された線形変換器は、正準問題を解くアルゴリズムを実装可能であることを示す。
そこで我々は,これらのグラフアルゴリズムをそれぞれ実装するための明示的な重み設定を提案し,基礎となるアルゴリズムの誤差によって構築したトランスフォーマーの誤差を限定する。
論文 参考訳(メタデータ) (2024-10-22T05:11:45Z) - Graph as Point Set [31.448841287258116]
本稿では,相互接続ノードを独立点の集合に変換するグラフ・ツー・セット変換法を提案する。
これにより、セットエンコーダを使用してグラフから学習することが可能になり、グラフニューラルネットワークの設計空間が大幅に拡張される。
提案手法の有効性を示すために,グラフから変換された点集合を入力として受け入れる変換器アーキテクチャであるPoint Set Transformer (PST)を導入する。
論文 参考訳(メタデータ) (2024-05-05T02:29:41Z) - Graph Transformers without Positional Encodings [0.7252027234425334]
グラフのラプラシアンスペクトルを認識する新しいスペクトル対応アテンション機構を用いたグラフ変換器であるEigenformerを紹介する。
我々は,多数の標準GNNベンチマークにおいて,SOTAグラフ変換器の性能向上を実証的に示す。
論文 参考訳(メタデータ) (2024-01-31T12:33:31Z) - Gramformer: Learning Crowd Counting via Graph-Modulated Transformer [68.26599222077466]
Gramformerはグラフ変調変換器で、それぞれ注意点と入力ノードの特徴を調整してネットワークを強化する。
ノードの集中位置や重要性を発見するために,特徴に基づく符号化を提案する。
提案手法の競争性を検証した4つの挑戦的群集カウントデータセットの実験を行った。
論文 参考訳(メタデータ) (2024-01-08T13:01:54Z) - Discrete Graph Auto-Encoder [52.50288418639075]
離散グラフオートエンコーダ(DGAE)という新しいフレームワークを導入する。
まず、置換同変オートエンコーダを用いてグラフを離散潜在ノード表現の集合に変換する。
2番目のステップでは、離散潜在表現の集合をソートし、特別に設計された自己回帰モデルを用いてそれらの分布を学習する。
論文 参考訳(メタデータ) (2023-06-13T12:40:39Z) - Graph Inductive Biases in Transformers without Message Passing [47.238185813842996]
新しいグラフ誘導バイアス変換器(GRIT)は、メッセージパッシングを使わずにグラフ誘導バイアスを組み込む。
GRITは、さまざまなグラフデータセットにまたがる最先端の実証的なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-27T22:26:27Z) - Transformers over Directed Acyclic Graphs [6.263470141349622]
有向非巡回グラフ(DAG)上の変換器について検討し,DAGに適したアーキテクチャ適応を提案する。
グラフトランスフォーマーは、DAGに適したグラフニューラルネットワークを概ね上回り、品質と効率の両面でSOTAグラフトランスフォーマーの性能を向上させるのに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-24T12:04:52Z) - Transformer for Graphs: An Overview from Architecture Perspective [86.3545861392215]
グラフのために既存のTransformerモデルを分類し、様々なグラフタスクでそれらの効果を体系的に研究することが不可欠です。
まず、既存のモデルを分解し、バニラ変換器にグラフ情報を組み込む典型的な3つの方法を結論付けます。
本実験は,Transformerにおける現在のグラフ固有のモジュールの利点を確認し,異なる種類のグラフタスクにおけるそれらの利点を明らかにする。
論文 参考訳(メタデータ) (2022-02-17T06:02:06Z) - GraphiT: Encoding Graph Structure in Transformers [37.33808493548781]
古典的グラフニューラルネットワーク(GNN)を用いて学習した表現を,ノードの特徴と構造的および位置的情報の集合として見ることにより,より優れた表現を実現できることを示す。
我々のモデルであるGraphiTは,グラフ上の正定値カーネルに基づく自己注意スコアにおける相対的な位置符号化戦略と,短距離パスなどの局所的なサブ構造を列挙して符号化することで,そのような情報を符号化する。
論文 参考訳(メタデータ) (2021-06-10T11:36:22Z) - Do Transformers Really Perform Bad for Graph Representation? [62.68420868623308]
標準の Transformer アーキテクチャをベースに構築された Graphormer について述べる。
グラフでTransformerを利用する上で重要な洞察は、グラフの構造情報をモデルに効果的にエンコードする必要があることである。
論文 参考訳(メタデータ) (2021-06-09T17:18:52Z) - A Generalization of Transformer Networks to Graphs [5.736353542430439]
標準モデルと比較して4つの新しい特性を持つグラフトランスを紹介します。
アーキテクチャはエッジ特徴表現に拡張され、化学(結合型)やリンク予測(知識グラフにおけるエンタリティ関係)といったタスクに重要なものとなる。
論文 参考訳(メタデータ) (2020-12-17T16:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。