Clinical Decision Transformer: Intended Treatment Recommendation through
Goal Prompting
- URL: http://arxiv.org/abs/2302.00612v1
- Date: Wed, 1 Feb 2023 17:26:01 GMT
- Title: Clinical Decision Transformer: Intended Treatment Recommendation through
Goal Prompting
- Authors: Seunghyun Lee, Da Young Lee, Sujeong Im, Nan Hee Kim, Sung-Min Park
- Abstract summary: We propose Clinical Decision Transformer (CDT), a recommender system that generates a sequence of medications to reach a desired range of clinical states given as goal prompts.
In an experiment, we extracted a diabetes dataset from an EHR system, which contained treatment histories of 4788 patients.
To the best of our knowledge, this is the first study to explore clinical recommendations from the perspective of goal prompting.
- Score: 8.81521901097629
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With recent achievements in tasks requiring context awareness, foundation
models have been adopted to treat large-scale data from electronic health
record (EHR) systems. However, previous clinical recommender systems based on
foundation models have a limited purpose of imitating clinicians' behavior and
do not directly consider a problem of missing values. In this paper, we propose
Clinical Decision Transformer (CDT), a recommender system that generates a
sequence of medications to reach a desired range of clinical states given as
goal prompts. For this, we conducted goal-conditioned sequencing, which
generated a subsequence of treatment history with prepended future goal state,
and trained the CDT to model sequential medications required to reach that goal
state. For contextual embedding over intra-admission and inter-admissions, we
adopted a GPT-based architecture with an admission-wise attention mask and
column embedding. In an experiment, we extracted a diabetes dataset from an EHR
system, which contained treatment histories of 4788 patients. We observed that
the CDT achieved the intended treatment effect according to goal prompt ranges
(e.g., NormalA1c, LowerA1c, and HigherA1c), contrary to the case with behavior
cloning. To the best of our knowledge, this is the first study to explore
clinical recommendations from the perspective of goal prompting. See
https://clinical-decision-transformer.github.io for code and additional
information.
Related papers
- PriorRG: Prior-Guided Contrastive Pre-training and Coarse-to-Fine Decoding for Chest X-ray Report Generation [12.860257420677122]
PriorRG is a chest X-ray report generation framework that emulates real-world clinical via a two-stage training pipeline.<n>In Stage 1, we introduce a prior-guided contrast pre-training scheme that leverages clinical context guidetemporal feature extraction.<n>In Stage 2, we integrate a prior-aware coarsetemporal decoding for generation that enhances prior knowledge with the vision encoders hidden states.
arXiv Detail & Related papers (2025-08-07T13:02:20Z) - Parameterized Diffusion Optimization enabled Autoregressive Ordinal Regression for Diabetic Retinopathy Grading [53.11883409422728]
This work proposes a novel autoregressive ordinal regression method called AOR-DR.<n>We decompose the diabetic retinopathy grading task into a series of ordered steps by fusing the prediction of the previous steps with extracted image features.<n>We exploit the diffusion process to facilitate conditional probability modeling, enabling the direct use of continuous global image features for autoregression.
arXiv Detail & Related papers (2025-07-07T13:22:35Z) - CLaDMoP: Learning Transferrable Models from Successful Clinical Trials via LLMs [14.116060944536011]
We introduce CLaDMoP, a new pre-training approach for clinical trial outcome prediction.<n>CLaDMoP encodes trials' eligibility criteria-linked to a lightweight Drug-Molecule branch through a novel multi-level fusion technique.<n>CLaDMoP achieves up to 10.5% improvement in PR-AUC and 3.6% in ROC-AUC, while attaining comparable F1 score to MEXA-CTP.
arXiv Detail & Related papers (2025-05-24T05:45:32Z) - MedPlan:A Two-Stage RAG-Based System for Personalized Medical Plan Generation [21.38221785417373]
We introduce MedPlan, a framework that structures reasoning to align with real-life clinicians.
Our approach employs a two-stage architecture that first generates a clinical assessment based on patient symptoms and objective data, then formulates a structured treatment plan informed by this assessment and enriched with patient-specific information through retrieval-augmented generation.
arXiv Detail & Related papers (2025-03-23T02:03:56Z) - Towards Regulatory-Confirmed Adaptive Clinical Trials: Machine Learning Opportunities and Solutions [59.28853595868749]
We introduce two new objectives for future clinical trials that integrate regulatory constraints and treatment policy value for both the entire population and under-served populations.
We formulate Randomize First Augment Next (RFAN), a new framework for designing Phase III clinical trials.
Our framework consists of a standard randomized component followed by an adaptive one, jointly meant to efficiently and safely acquire and assign patients into treatment arms during the trial.
arXiv Detail & Related papers (2025-03-12T10:17:54Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
We present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow.
We also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses.
arXiv Detail & Related papers (2024-12-02T15:25:02Z) - Early Prediction of Causes (not Effects) in Healthcare by Long-Term Clinical Time Series Forecasting [11.96384267146423]
We propose to directly predict the causes via time series forecasting (TSF) of clinical variables.
Because model training does not rely on a particular label anymore, the forecasted data can be used to predict any consensus-based label.
arXiv Detail & Related papers (2024-08-07T14:52:06Z) - Towards Efficient Patient Recruitment for Clinical Trials: Application of a Prompt-Based Learning Model [0.7373617024876725]
Clinical trials are essential for advancing pharmaceutical interventions, but they face a bottleneck in selecting eligible participants.
The complex nature of unstructured medical texts presents challenges in efficiently identifying participants.
In this study, we aimed to evaluate the performance of a prompt-based large language model for the cohort selection task.
arXiv Detail & Related papers (2024-04-24T20:42:28Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
Medication recommendation targets to provide a proper set of medicines according to patients' diagnoses, which is a critical task in clinics.
We propose Conditional Generation Net (COGNet) which introduces a novel copy-or-predict mechanism to generate the set of medicines.
We validate the proposed model on the public MIMIC data set, and the experimental results show that the proposed model can outperform state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-14T10:16:41Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
We introduce techniques to help bridge this gap between EBM and AI-based clinical models.
We propose a novel system that automatically retrieves patient-specific literature based on intensive care (ICU) patient information.
Our model is able to substantially boost predictive accuracy on three challenging tasks in comparison to strong recent baselines.
arXiv Detail & Related papers (2021-11-16T11:19:02Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - A Methodology for Bi-Directional Knowledge-Based Assessment of
Compliance to Continuous Application of Clinical Guidelines [1.52292571922932]
We introduce a new approach for automated guideline-based quality assessment of the care process.
The BiKBAC method assesses the degree of compliance when applying clinical guidelines.
The DiscovErr system was evaluated in a separate study in the type 2 diabetes management domain.
arXiv Detail & Related papers (2021-03-13T20:43:45Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
Our aim is to establish a framework where reinforcement learning (RL) of optimizing interventions retrospectively allows us a regulatory compliant pathway to prospective clinical testing of the learned policies.
We focus on infections in intensive care units which are one of the major causes of death and difficult to treat because of the complex and opaque patient dynamics.
arXiv Detail & Related papers (2020-03-13T20:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.